A122176
Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 15, 8, 1, 6, 15, 35, 36, 12, 1, 7, 21, 70, 120, 78, 17, 1, 8, 28, 126, 330, 364, 153, 23, 1, 9, 36, 210, 792, 1365, 969, 276, 30, 1, 10, 45, 330, 1716, 4368, 4845, 2300, 465, 38, 1, 11, 55, 495, 3432, 12376, 20349, 14950, 4960, 741, 47, 1
Offset: 0
Triangle begins:
1;
2, 1;
3, 3, 1;
4, 6, 5, 1;
5, 10, 15, 8, 1;
6, 15, 35, 36, 12, 1;
7, 21, 70, 120, 78, 17, 1;
8, 28, 126, 330, 364, 153, 23, 1;
9, 36, 210, 792, 1365, 969, 276, 30, 1; ...
-
Flatten[Table[Binomial[(k(k+1))/2+n-k+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 18 2013 *)
-
T(n,k)=if(n
A121440
Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0
Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
-
/* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}
A121437
Matrix inverse of triangle A122177, where A122177(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, -3, 1, 6, -4, 1, -16, 14, -6, 1, 63, -62, 33, -9, 1, -351, 365, -215, 72, -13, 1, 2609, -2790, 1731, -642, 143, -18, 1, -24636, 26749, -17076, 6696, -1664, 261, -24, 1, 284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1, -3909926, 4305579, -2822991, 1166310, -320515, 60768, -8012, 713, -39, 1
Offset: 0
Triangle begins:
1;
-3, 1;
6, -4, 1;
-16, 14, -6, 1;
63, -62, 33, -9, 1;
-351, 365, -215, 72, -13, 1;
2609, -2790, 1731, -642, 143, -18, 1;
-24636, 26749, -17076, 6696, -1664, 261, -24, 1;
284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1; ...
-
/* Matrix Inverse of A122177 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r+1,r-c)))); return((M^-1)[n+1,k+1])
-
/* Obtain by g.f. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+3)), n-k)
Showing 1-3 of 3 results.
Comments