A121335
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 1, n-k), for n>=k>=0.
Original entry on oeis.org
1, 3, 1, 15, 5, 1, 120, 36, 8, 1, 1365, 364, 78, 12, 1, 20349, 4845, 969, 153, 17, 1, 376740, 80730, 14950, 2300, 276, 23, 1, 8347680, 1623160, 278256, 40920, 4960, 465, 30, 1, 215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1, 6358402050
Offset: 0
Triangle begins:
1;
3, 1;
15, 5, 1;
120, 36, 8, 1;
1365, 364, 78, 12, 1;
20349, 4845, 969, 153, 17, 1;
376740, 80730, 14950, 2300, 276, 23, 1;
8347680, 1623160, 278256, 40920, 4960, 465, 30, 1;
215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1; ...
A121438
Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
Offset: 0
Triangle, A122178^-1, begins:
1;
-1, 1;
-3, -3, 1;
-17, -3, -6, 1;
-160, -25, 5, -10, 1;
-2088, -285, -35, 30, -15, 1;
-34307, -4179, -420, -91, 84, -21, 1;
-675091, -74823, -6916, -497, -322, 182, -28, 1;
-15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins:
1;
-6, 1;
3, -6, 1;
-17, -3, -6, 1; ...
Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins:
1;
-10, 1;
25, -10, 1;
-15, 15, -10, 1;
-160, -25, 5, -10, 1; ...
-
/* Matrix Inverse of A122178 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c-1,r-c)))); return((M^-1)[n+1,k+1])}
A121439
Matrix inverse of triangle A121334, where A121334(n,k) = C( n*(n+1)/2 + n-k, n-k) for n>=k>=0.
Original entry on oeis.org
1, -2, 1, -2, -4, 1, -14, 0, -7, 1, -143, -22, 11, -11, 1, -1928, -260, -40, 40, -16, 1, -32219, -3894, -385, -121, 99, -22, 1, -640784, -70644, -6496, -406, -406, 203, -29, 1, -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1, -385500056, -36631962, -2947266, -205620, -14076, 3657, -2967, 621
Offset: 0
Triangle, A121334^-1, begins:
1;
-2, 1;
-2, -4, 1;
-14, 0, -7, 1;
-143, -22, 11, -11, 1;
-1928, -260, -40, 40, -16, 1;
-32219, -3894, -385, -121, 99, -22, 1;
-640784, -70644, -6496, -406, -406, 203, -29, 1;
-14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121334^-1 equals row 3 of A121412^(-7), which begins:
1;
-7, 1;
7, -7, 1;
-14, 0, -7, 1; ...
Row 4 of A121334^-1 equals row 4 of A121412^(-11), which begins:
1;
-11, 1;
33, -11, 1;
-22, 22, -11, 1;
-143, -22, 11, -11, 1;...
-
/* Matrix Inverse of A121334 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c,r-c)))); return((M^-1)[n+1,k+1])}
A121441
Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0
Triangle, A121336^-1, begins:
1;
-4, 1;
3, -6, 1;
-12, 9, -9, 1;
-117, -26, 26, -13, 1;
-1656, -216, -69, 63, -18, 1;
-28506, -3396, -294, -212, 132, -24, 1;
-578274, -63116, -5766, -124, -620, 248, -31, 1;
-13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins:
1;
-9, 1;
18, -9, 1;
-12, 9, -9, 1; ...
Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins:
1;
-13, 1;
52, -13, 1;
-52, 39, -13, 1;
-117, -26, 26, -13, 1; ...
-
/* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}
Showing 1-4 of 4 results.
Comments