cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121440 Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121436.

Examples

			Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
		

Crossrefs

Cf. A121335 (matrix inverse); A121412; variants: A121438, A121439, A121441; A121436 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 2)](n,k) for n>=k>=0; i.e., row n of A121335^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 2).

A121334 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k, n-k), for n>=k>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 84, 28, 7, 1, 1001, 286, 66, 11, 1, 15504, 3876, 816, 136, 16, 1, 296010, 65780, 12650, 2024, 253, 22, 1, 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1, 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1, 5317936260
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A122175.

Examples

			Triangle begins:
1;
2, 1;
10, 4, 1;
84, 28, 7, 1;
1001, 286, 66, 11, 1;
15504, 3876, 816, 136, 16, 1;
296010, 65780, 12650, 2024, 253, 22, 1;
6724520, 1344904, 237336, 35960, 4495, 435, 29, 1;
177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1; ...
		

Crossrefs

Cf. A121439 (matrix inverse); A121412; variants: A122178, A121335, A121336; A122175 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k,n-k)

Formula

Remarkably, row n of the matrix inverse (A121439) equals row n of A121412^(-n*(n+1)/2-1). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.

A121336 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 2, n-k), for n>=k>=0.

Original entry on oeis.org

1, 4, 1, 21, 6, 1, 165, 45, 9, 1, 1820, 455, 91, 13, 1, 26334, 5985, 1140, 171, 18, 1, 475020, 98280, 17550, 2600, 300, 24, 1, 10295472, 1947792, 324632, 46376, 5456, 496, 31, 1, 260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A122177.

Examples

			Triangle begins:
1;
4, 1;
21, 6, 1;
165, 45, 9, 1;
1820, 455, 91, 13, 1;
26334, 5985, 1140, 171, 18, 1;
475020, 98280, 17550, 2600, 300, 24, 1;
10295472, 1947792, 324632, 46376, 5456, 496, 31, 1;
260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1; ...
		

Crossrefs

Cf. A121441 (matrix inverse); A121412; variants: A122178, A121334, A121335; A122177 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k+2,n-k)

Formula

Remarkably, row n of the matrix inverse (A121441) equals row n of A121412^(-n*(n+1)/2-3). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.

A122178 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k - 1, n-k), for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 56, 21, 6, 1, 715, 220, 55, 10, 1, 11628, 3060, 680, 120, 15, 1, 230230, 53130, 10626, 1771, 231, 21, 1, 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1, 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1, 4431613550
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A098568.

Examples

			Triangle begins:
1;
1, 1;
6, 3, 1;
56, 21, 6, 1;
715, 220, 55, 10, 1;
11628, 3060, 680, 120, 15, 1;
230230, 53130, 10626, 1771, 231, 21, 1;
5379616, 1107568, 201376, 31465, 4060, 406, 28, 1;
145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1; ...
		

Crossrefs

Cf. A121438 (matrix inverse); A121412; variants: A121334, A121335, A121336; A098568 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k-1,n-k)

Formula

Remarkably, row n of the matrix inverse (A121438) equals row n of A121412^(-n*(n+1)/2). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.
Showing 1-4 of 4 results.