A121438
Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
Offset: 0
Triangle, A122178^-1, begins:
1;
-1, 1;
-3, -3, 1;
-17, -3, -6, 1;
-160, -25, 5, -10, 1;
-2088, -285, -35, 30, -15, 1;
-34307, -4179, -420, -91, 84, -21, 1;
-675091, -74823, -6916, -497, -322, 182, -28, 1;
-15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins:
1;
-6, 1;
3, -6, 1;
-17, -3, -6, 1; ...
Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins:
1;
-10, 1;
25, -10, 1;
-15, 15, -10, 1;
-160, -25, 5, -10, 1; ...
-
/* Matrix Inverse of A122178 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c-1,r-c)))); return((M^-1)[n+1,k+1])}
A121334
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k, n-k), for n>=k>=0.
Original entry on oeis.org
1, 2, 1, 10, 4, 1, 84, 28, 7, 1, 1001, 286, 66, 11, 1, 15504, 3876, 816, 136, 16, 1, 296010, 65780, 12650, 2024, 253, 22, 1, 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1, 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1, 5317936260
Offset: 0
Triangle begins:
1;
2, 1;
10, 4, 1;
84, 28, 7, 1;
1001, 286, 66, 11, 1;
15504, 3876, 816, 136, 16, 1;
296010, 65780, 12650, 2024, 253, 22, 1;
6724520, 1344904, 237336, 35960, 4495, 435, 29, 1;
177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1; ...
A121335
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 1, n-k), for n>=k>=0.
Original entry on oeis.org
1, 3, 1, 15, 5, 1, 120, 36, 8, 1, 1365, 364, 78, 12, 1, 20349, 4845, 969, 153, 17, 1, 376740, 80730, 14950, 2300, 276, 23, 1, 8347680, 1623160, 278256, 40920, 4960, 465, 30, 1, 215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1, 6358402050
Offset: 0
Triangle begins:
1;
3, 1;
15, 5, 1;
120, 36, 8, 1;
1365, 364, 78, 12, 1;
20349, 4845, 969, 153, 17, 1;
376740, 80730, 14950, 2300, 276, 23, 1;
8347680, 1623160, 278256, 40920, 4960, 465, 30, 1;
215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1; ...
A121336
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 2, n-k), for n>=k>=0.
Original entry on oeis.org
1, 4, 1, 21, 6, 1, 165, 45, 9, 1, 1820, 455, 91, 13, 1, 26334, 5985, 1140, 171, 18, 1, 475020, 98280, 17550, 2600, 300, 24, 1, 10295472, 1947792, 324632, 46376, 5456, 496, 31, 1, 260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1
Offset: 0
Triangle begins:
1;
4, 1;
21, 6, 1;
165, 45, 9, 1;
1820, 455, 91, 13, 1;
26334, 5985, 1140, 171, 18, 1;
475020, 98280, 17550, 2600, 300, 24, 1;
10295472, 1947792, 324632, 46376, 5456, 496, 31, 1;
260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1; ...
Showing 1-4 of 4 results.
Comments