A122178
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k - 1, n-k), for n>=k>=0.
Original entry on oeis.org
1, 1, 1, 6, 3, 1, 56, 21, 6, 1, 715, 220, 55, 10, 1, 11628, 3060, 680, 120, 15, 1, 230230, 53130, 10626, 1771, 231, 21, 1, 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1, 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1, 4431613550
Offset: 0
Triangle begins:
1;
1, 1;
6, 3, 1;
56, 21, 6, 1;
715, 220, 55, 10, 1;
11628, 3060, 680, 120, 15, 1;
230230, 53130, 10626, 1771, 231, 21, 1;
5379616, 1107568, 201376, 31465, 4060, 406, 28, 1;
145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1; ...
A121439
Matrix inverse of triangle A121334, where A121334(n,k) = C( n*(n+1)/2 + n-k, n-k) for n>=k>=0.
Original entry on oeis.org
1, -2, 1, -2, -4, 1, -14, 0, -7, 1, -143, -22, 11, -11, 1, -1928, -260, -40, 40, -16, 1, -32219, -3894, -385, -121, 99, -22, 1, -640784, -70644, -6496, -406, -406, 203, -29, 1, -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1, -385500056, -36631962, -2947266, -205620, -14076, 3657, -2967, 621
Offset: 0
Triangle, A121334^-1, begins:
1;
-2, 1;
-2, -4, 1;
-14, 0, -7, 1;
-143, -22, 11, -11, 1;
-1928, -260, -40, 40, -16, 1;
-32219, -3894, -385, -121, 99, -22, 1;
-640784, -70644, -6496, -406, -406, 203, -29, 1;
-14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121334^-1 equals row 3 of A121412^(-7), which begins:
1;
-7, 1;
7, -7, 1;
-14, 0, -7, 1; ...
Row 4 of A121334^-1 equals row 4 of A121412^(-11), which begins:
1;
-11, 1;
33, -11, 1;
-22, 22, -11, 1;
-143, -22, 11, -11, 1;...
-
/* Matrix Inverse of A121334 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c,r-c)))); return((M^-1)[n+1,k+1])}
A121440
Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0
Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
-
/* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}
A121441
Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0
Triangle, A121336^-1, begins:
1;
-4, 1;
3, -6, 1;
-12, 9, -9, 1;
-117, -26, 26, -13, 1;
-1656, -216, -69, 63, -18, 1;
-28506, -3396, -294, -212, 132, -24, 1;
-578274, -63116, -5766, -124, -620, 248, -31, 1;
-13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins:
1;
-9, 1;
18, -9, 1;
-12, 9, -9, 1; ...
Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins:
1;
-13, 1;
52, -13, 1;
-52, 39, -13, 1;
-117, -26, 26, -13, 1; ...
-
/* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}
Showing 1-4 of 4 results.
Comments