A121334
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k, n-k), for n>=k>=0.
Original entry on oeis.org
1, 2, 1, 10, 4, 1, 84, 28, 7, 1, 1001, 286, 66, 11, 1, 15504, 3876, 816, 136, 16, 1, 296010, 65780, 12650, 2024, 253, 22, 1, 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1, 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1, 5317936260
Offset: 0
Triangle begins:
1;
2, 1;
10, 4, 1;
84, 28, 7, 1;
1001, 286, 66, 11, 1;
15504, 3876, 816, 136, 16, 1;
296010, 65780, 12650, 2024, 253, 22, 1;
6724520, 1344904, 237336, 35960, 4495, 435, 29, 1;
177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1; ...
A121438
Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
Offset: 0
Triangle, A122178^-1, begins:
1;
-1, 1;
-3, -3, 1;
-17, -3, -6, 1;
-160, -25, 5, -10, 1;
-2088, -285, -35, 30, -15, 1;
-34307, -4179, -420, -91, 84, -21, 1;
-675091, -74823, -6916, -497, -322, 182, -28, 1;
-15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins:
1;
-6, 1;
3, -6, 1;
-17, -3, -6, 1; ...
Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins:
1;
-10, 1;
25, -10, 1;
-15, 15, -10, 1;
-160, -25, 5, -10, 1; ...
-
/* Matrix Inverse of A122178 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c-1,r-c)))); return((M^-1)[n+1,k+1])}
A121440
Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0
Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
-
/* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}
A121441
Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0
Triangle, A121336^-1, begins:
1;
-4, 1;
3, -6, 1;
-12, 9, -9, 1;
-117, -26, 26, -13, 1;
-1656, -216, -69, 63, -18, 1;
-28506, -3396, -294, -212, 132, -24, 1;
-578274, -63116, -5766, -124, -620, 248, -31, 1;
-13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins:
1;
-9, 1;
18, -9, 1;
-12, 9, -9, 1; ...
Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins:
1;
-13, 1;
52, -13, 1;
-52, 39, -13, 1;
-117, -26, 26, -13, 1; ...
-
/* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}
Showing 1-4 of 4 results.
Comments