A121437 Matrix inverse of triangle A122177, where A122177(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.
1, -3, 1, 6, -4, 1, -16, 14, -6, 1, 63, -62, 33, -9, 1, -351, 365, -215, 72, -13, 1, 2609, -2790, 1731, -642, 143, -18, 1, -24636, 26749, -17076, 6696, -1664, 261, -24, 1, 284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1, -3909926, 4305579, -2822991, 1166310, -320515, 60768, -8012, 713, -39, 1
Offset: 0
Examples
Triangle begins: 1; -3, 1; 6, -4, 1; -16, 14, -6, 1; 63, -62, 33, -9, 1; -351, 365, -215, 72, -13, 1; 2609, -2790, 1731, -642, 143, -18, 1; -24636, 26749, -17076, 6696, -1664, 261, -24, 1; 284631, -311769, 202356, -81963, 21684, -3831, 444, -31, 1; ...
Programs
-
PARI
/* Matrix Inverse of A122177 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r+1,r-c)))); return((M^-1)[n+1,k+1])
-
PARI
/* Obtain by g.f. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+3)), n-k)
Formula
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 3)](n,k); i.e., column k equals signed column k of A107876^(k*(k+1)/2 + 3).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 3);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 3).
From Benedict W. J. Irwin, Nov 26 2016: (Start)
Conjecture: The sequence (column 2 of triangle) 14, -62, 365, -2790, 26749, ... is described by a series of nested sums:
14 = Sum_{i=1..4} (i+1),
-62 = -Sum_{i=1..4} (Sum_{j=1..i+1} (j+2)),
365 = Sum_{i=1..4} (Sum_{j=1..i+1} (Sum_{k=1..j+2} (k+3))),
-2790 = -Sum_{i=1..4} (Sum_{j=1..i+1} (Sum_{k=1..j+2} (Sum_{l=1..k+3} (l+4)))). (End)