A121438 Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.
1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
Offset: 0
Examples
Triangle, A122178^-1, begins: 1; -1, 1; -3, -3, 1; -17, -3, -6, 1; -160, -25, 5, -10, 1; -2088, -285, -35, 30, -15, 1; -34307, -4179, -420, -91, 84, -21, 1; -675091, -74823, -6916, -497, -322, 182, -28, 1; -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ... Triangle A121412 begins: 1; 1, 1; 3, 1, 1; 18, 4, 1, 1; 170, 30, 5, 1, 1; ... Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins: 1; -6, 1; 3, -6, 1; -17, -3, -6, 1; ... Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins: 1; -10, 1; 25, -10, 1; -15, 15, -10, 1; -160, -25, 5, -10, 1; ...
Crossrefs
Programs
-
PARI
/* Matrix Inverse of A122178 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c-1,r-c)))); return((M^-1)[n+1,k+1])}
Comments