A121439 Matrix inverse of triangle A121334, where A121334(n,k) = C( n*(n+1)/2 + n-k, n-k) for n>=k>=0.
1, -2, 1, -2, -4, 1, -14, 0, -7, 1, -143, -22, 11, -11, 1, -1928, -260, -40, 40, -16, 1, -32219, -3894, -385, -121, 99, -22, 1, -640784, -70644, -6496, -406, -406, 203, -29, 1, -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1, -385500056, -36631962, -2947266, -205620, -14076, 3657, -2967, 621
Offset: 0
Examples
Triangle, A121334^-1, begins: 1; -2, 1; -2, -4, 1; -14, 0, -7, 1; -143, -22, 11, -11, 1; -1928, -260, -40, 40, -16, 1; -32219, -3894, -385, -121, 99, -22, 1; -640784, -70644, -6496, -406, -406, 203, -29, 1; -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1; ... Triangle A121412 begins: 1; 1, 1; 3, 1, 1; 18, 4, 1, 1; 170, 30, 5, 1, 1; ... Row 3 of A121334^-1 equals row 3 of A121412^(-7), which begins: 1; -7, 1; 7, -7, 1; -14, 0, -7, 1; ... Row 4 of A121334^-1 equals row 4 of A121412^(-11), which begins: 1; -11, 1; 33, -11, 1; -22, 22, -11, 1; -143, -22, 11, -11, 1;...
Crossrefs
Programs
-
PARI
/* Matrix Inverse of A121334 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c,r-c)))); return((M^-1)[n+1,k+1])}
Comments