cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121485 Number of nondecreasing Dyck paths of semilength n and having no peaks at even level (n>=0). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 33, 66, 136, 274, 562, 1138, 2327, 4725, 9645, 19613, 39997, 81397, 165906, 337773, 688260, 1401565, 2855432, 5815477, 11846941, 24129498, 49152840, 100116607, 203936639, 415394872, 846143795, 1723513075, 3510704795
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

Column 0 of A121484.

Examples

			a(4)=4 because we have UDUDUDUD, UDUUUDDD, UUUDDDUD and UUUDUDDD, where U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,4,8,16]; [n le 6 select I[n] else Self(n-1)+4*Self(n-2)-2*Self(n-3)-4*Self(n-4)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 12 2015
  • Maple
    G:=z*(1-z^2)*(1-2*z^2)/(1-4*z^2-z+4*z^4-z^6+2*z^3): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=1..37);
  • Mathematica
    LinearRecurrence[{1, 4, -2, -4, 0, 1}, {1, 1, 2, 4, 8, 16}, 40] (* Vincenzo Librandi, Sep 12 2015 *)
  • PARI
    Vec(z*(1-z^2)*(1-2*z^2)/(1-z-4*z^2+2*z^3+4*z^4-z^6) + O(z^60)) \\ Michel Marcus, Sep 11 2015
    

Formula

G.f.: z(1-z^2)(1-2z^2)/(1-z-4z^2+2z^3+4z^4-z^6).
a(n) = a(n-1)+4*a(n-2)-2*a(n-3)-4*a(n-4)+a(n-6) for n>6. - Colin Barker, Sep 11 2015