A121484 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n, having k peaks at even level (n>=1,0<=k<=n-1). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
1, 1, 1, 2, 2, 1, 4, 6, 2, 1, 8, 13, 10, 2, 1, 16, 34, 23, 13, 2, 1, 33, 74, 75, 32, 16, 2, 1, 66, 178, 180, 124, 40, 19, 2, 1, 136, 390, 497, 321, 180, 48, 22, 2, 1, 274, 895, 1192, 1004, 488, 244, 56, 25, 2, 1, 562, 1958, 3033, 2598, 1701, 682, 317, 64, 28, 2, 1, 1138, 4374
Offset: 1
Examples
T(4,2)=2 because we have UDUU|DU|DD and UU|DDUU|DD, where U=(1,1) and D=(1,-1) (the peaks at even level are shown by a |). Triangle starts: 1; 1,1; 2,2,1; 4,6,2,1; 8,13,10,2,1; 16,34,23,13,2,1;
Links
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
Programs
-
Maple
G:=z*(1-z^2)*(1-2*z^2-t*z^3)/(1-4*z^2-z-t*z+2*t*z^4+4*z^4-z^6+2*z^3+t*z^3+z^3*t^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
Formula
G.f.: G(t,z) = z(1-z^2)(1-2z^2-tz^3)/(1-4z^2-z-tz+2tz^4+4z^4-z^6 +2z^3+tz^3+t^2*z^3).
Comments