cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121481 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n, having k peaks at odd level (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 3, 3, 6, 0, 1, 5, 14, 5, 9, 0, 1, 12, 22, 35, 7, 12, 0, 1, 22, 68, 53, 65, 9, 15, 0, 1, 49, 127, 203, 97, 104, 11, 18, 0, 1, 94, 329, 390, 444, 153, 152, 13, 21, 0, 1, 201, 664, 1157, 873, 816, 221, 209, 15, 24, 0, 1, 396, 1576, 2456, 2925, 1627, 1345
Offset: 0

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

Row sums are the odd-subscripted Fibonacci numbers (A001519). T(n,0)=A121482(n). Sum(k*T(n,k),k=0..n)=A121483(n).

Examples

			T(3,1)=3 because we have U|DUUDUDD, UUDUU|DDD and UUU|DDUDD, where U=(1,1) and D=(1,-1) (the peaks at odd level are shown by a |; the Dyck path UUDUDDUD has 1 peak at odd level but it is not nondecreasing).
Triangle starts:
1;
0,1;
1,0,1;
1,3,0,1;
3,3,6,0,1;
5,14,5,9,0,1;
		

Crossrefs

Programs

  • Maple
    G:=(t*z^2+z^2+z-1)*(t*z^3+2*z^2-1)/(1-4*z^2-z-t*z+2*z^4*t+4*z^4-z^6+2*z^3+t*z^3+z^3*t^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (tz^2+z^2+z-1)(tz^3+2z^2-1)/(1-4z^2-z-tz+2tz^4+4z^4-z^6+2z^3+tz^3+t^2*z^3).

A121485 Number of nondecreasing Dyck paths of semilength n and having no peaks at even level (n>=0). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 33, 66, 136, 274, 562, 1138, 2327, 4725, 9645, 19613, 39997, 81397, 165906, 337773, 688260, 1401565, 2855432, 5815477, 11846941, 24129498, 49152840, 100116607, 203936639, 415394872, 846143795, 1723513075, 3510704795
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

Column 0 of A121484.

Examples

			a(4)=4 because we have UDUDUDUD, UDUUUDDD, UUUDDDUD and UUUDUDDD, where U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,4,8,16]; [n le 6 select I[n] else Self(n-1)+4*Self(n-2)-2*Self(n-3)-4*Self(n-4)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 12 2015
  • Maple
    G:=z*(1-z^2)*(1-2*z^2)/(1-4*z^2-z+4*z^4-z^6+2*z^3): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=1..37);
  • Mathematica
    LinearRecurrence[{1, 4, -2, -4, 0, 1}, {1, 1, 2, 4, 8, 16}, 40] (* Vincenzo Librandi, Sep 12 2015 *)
  • PARI
    Vec(z*(1-z^2)*(1-2*z^2)/(1-z-4*z^2+2*z^3+4*z^4-z^6) + O(z^60)) \\ Michel Marcus, Sep 11 2015
    

Formula

G.f.: z(1-z^2)(1-2z^2)/(1-z-4z^2+2z^3+4z^4-z^6).
a(n) = a(n-1)+4*a(n-2)-2*a(n-3)-4*a(n-4)+a(n-6) for n>6. - Colin Barker, Sep 11 2015

A121486 Number of peaks at even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

0, 1, 4, 13, 43, 132, 400, 1184, 3461, 9999, 28634, 81383, 229860, 645731, 1805582, 5028189, 13952221, 38590922, 106434540, 292792026, 803565215, 2200694791, 6015268164, 16412564173, 44708036568, 121600924117, 330277253560
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Examples

			a(3)=4 because in UDUDUD, UDUU|DD, UU|DDUD, UU|DU|DD and UUUDDD we have altogether 4 peaks at even level (shown by a |); here U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    G:=z^2*(1-z)*(1-z-3*z^2+3*z^3-z^4)/(1+z)/(1-z-z^2)/(1-3*z+z^2)^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=1..30);
  • Mathematica
    Rest[CoefficientList[Series[x^2*(1-x)*(1-x-3*x^2+3*x^3-x^4)/(1+x)/(1-x-x^2)/(1-3*x+x^2)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

a(n) = Sum(k*A121484(n,k),k=0..n-1).
G.f.: z^2*(1-z)(1-z-3z^2+3z^3-z^4)/[(1+z)(1-z-z^2)(1-3z+z^2)^2].
a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5 * 2^(n+2)). - Vaclav Kotesovec, Mar 20 2014
20*a(n) = -8*(-1)^n +10*(2*A001871(n)-5*A001871(n-1))+5*(4*A000045(n+1)-7*A000045(n))-3*(4*A001906(n+1)+9*A001906(n)). - R. J. Mathar, Jul 26 2022
Showing 1-3 of 3 results.