A121548 Triangle read by rows: T(n,k) is the number of compositions of n into k Fibonacci numbers (1 <= k <= n; only one 1 is considered as a Fibonacci number).
1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 1, 2, 6, 4, 1, 0, 3, 7, 10, 5, 1, 0, 2, 9, 16, 15, 6, 1, 1, 2, 9, 23, 30, 21, 7, 1, 0, 2, 10, 28, 50, 50, 28, 8, 1, 0, 3, 9, 34, 71, 96, 77, 36, 9, 1, 0, 2, 12, 36, 95, 156, 168, 112, 45, 10, 1, 0, 0, 12, 43, 115, 231, 308, 274, 156, 55, 11, 1, 1, 2, 9, 48, 140, 312, 504, 560, 423, 210, 66, 12, 1
Offset: 1
Examples
T(5,3)=6 because we have [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1] and [3,1,1]. Triangle starts: 1; 1, 1; 1, 2, 1; 0, 3, 3, 1; 1, 2, 6, 4, 1; 0, 3, 7, 10, 5, 1; 0, 2, 9, 16, 15, 6, 1; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
Programs
-
Maple
with(combinat): G:=1/(1-t*sum(z^fibonacci(i),i=2..40))-1: Gser:=simplify(series(G,z=0,25)): for n from 1 to 23 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 15 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form # second Maple program: g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end: T:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add( `if`(g(j), T(n-j, t-1), 0), j=1..n))) end: seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Oct 10 2022
-
Mathematica
nmax = 14; T = Rest@CoefficientList[#, t]& /@ Rest@(1/(1 - t*Sum[z^Fibonacci[i], {i, 2, nmax}]) - 1 + O[z]^(nmax+1) // CoefficientList[#, z]&); Table[T[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 02 2022 *)