cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121555 Number of 1-cell columns in all deco polyominoes of height n.

Original entry on oeis.org

1, 2, 7, 32, 178, 1164, 8748, 74304, 704016, 7362720, 84255840, 1047358080, 14054739840, 202514376960, 3118666924800, 51119166873600, 888640952371200, 16330301780889600, 316322420114534400, 6441691128993792000, 137586770616637440000, 3075566993729556480000
Offset: 1

Views

Author

Emeric Deutsch, Aug 08 2006

Keywords

Comments

A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
It appears that a(n) is a function of the harmonic numbers. [Gary Detlefs, Aug 13 2010]

Examples

			a(2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 2 columns with exactly 1 cell.
		

Crossrefs

Cf. A121554.

Programs

  • Maple
    a[1]:=1: for n from 2 to 23 do a[n]:=n*a[n-1]+(n-2)!*(n-2) od:
    seq(a[n], n = 1..23);
    # Alternative:
    a := n -> (n - 1)! * (n*harmonic(n) - (n - 1)):
    seq(a(n), n = 1..22);  # Peter Luschny, Apr 09 2024
  • Mathematica
    a[n_]:=Abs[StirlingS1[n+1,2]]-(n-1)*(n-1)!;Flatten[Table[a[n],{n,1,22}]] (* Detlef Meya, Apr 09 2024 *)

Formula

a(n) = Sum_{k=0..n} k*A121554(n, k).
a(1) = 1, a(n) = n*a(n-1)+(n-2)!*(n-2) for n >= 2.
a(n) = n!*(h(n) - (n-1)/n), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Aug 13 2010
(-n+3)*a(n) + (2*n^2-7*n+4)*a(n-1) - (n-1)*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Jul 15 2017
a(n) = abs(Stirling1(n + 1, 2)) - (n - 1)*(n - 1)!. - Detlef Meya, Apr 09 2024