A121555 Number of 1-cell columns in all deco polyominoes of height n.
1, 2, 7, 32, 178, 1164, 8748, 74304, 704016, 7362720, 84255840, 1047358080, 14054739840, 202514376960, 3118666924800, 51119166873600, 888640952371200, 16330301780889600, 316322420114534400, 6441691128993792000, 137586770616637440000, 3075566993729556480000
Offset: 1
Keywords
Examples
a(2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 2 columns with exactly 1 cell.
Links
- E. Barcucci, A. Del Lungo, and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
Crossrefs
Cf. A121554.
Programs
-
Maple
a[1]:=1: for n from 2 to 23 do a[n]:=n*a[n-1]+(n-2)!*(n-2) od: seq(a[n], n = 1..23); # Alternative: a := n -> (n - 1)! * (n*harmonic(n) - (n - 1)): seq(a(n), n = 1..22); # Peter Luschny, Apr 09 2024
-
Mathematica
a[n_]:=Abs[StirlingS1[n+1,2]]-(n-1)*(n-1)!;Flatten[Table[a[n],{n,1,22}]] (* Detlef Meya, Apr 09 2024 *)
Formula
a(n) = Sum_{k=0..n} k*A121554(n, k).
a(1) = 1, a(n) = n*a(n-1)+(n-2)!*(n-2) for n >= 2.
a(n) = n!*(h(n) - (n-1)/n), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Aug 13 2010
(-n+3)*a(n) + (2*n^2-7*n+4)*a(n-1) - (n-1)*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Jul 15 2017
a(n) = abs(Stirling1(n + 1, 2)) - (n - 1)*(n - 1)!. - Detlef Meya, Apr 09 2024
Comments