cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121647 Sequence gives values of sigma(n)^2 divided by UnitarySigma(n)*UnitaryPhi(n) associated with n in A121556.

Original entry on oeis.org

1, 3, 2, 6, 4, 3, 9, 2, 8, 6, 7, 4, 5, 12, 7, 3, 4, 10, 9, 7, 2, 5, 8, 6, 5, 14, 4, 10, 7, 5, 7, 5, 12, 10, 4, 3, 9, 14, 3, 10, 8, 10, 11, 15, 4, 9, 4, 2, 9, 3, 5, 6, 4, 7, 2, 8, 5, 15, 4, 11, 4, 5, 10, 16, 7, 10, 6, 13, 9, 2, 6, 7, 5, 4, 4, 6, 2, 8, 2, 15, 5, 8, 4, 11, 10, 12, 8
Offset: 1

Views

Author

Yasutoshi Kohmoto Sep 12 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)^2/(p-1)^2/(p^(2*e)-1); ratio[1] = 1; ratio[n_] := Times @@ (f @@@ FactorInteger[n]); Select[ratio /@ Range[10^5], IntegerQ] (* Amiram Eldar, Dec 11 2019 *)

Formula

a(n) = f(A121556(n)), where f(m) = A000203(m)^2/(A034448(m)*A047994(m)). - Amiram Eldar, Dec 11 2019

Extensions

Extended with the aid of b121556.txt. - R. J. Mathar, Sep 04 2018

A122839 Numbers such that Sigma(m)*UnitarySigma(m)= k*UnitaryPhi(m)^2, for some integer k.

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 60, 70, 78, 105, 190, 210, 312, 357, 418, 570, 714, 910, 1045, 1254, 1428, 2090, 2730, 3135, 3640, 4522, 4674, 5278, 6270, 10659, 10920, 12441, 13566, 14630, 15834, 16770, 18696, 20026, 21318, 23374, 24871, 24882, 24969, 25070, 25714, 27170
Offset: 1

Views

Author

Yasutoshi Kohmoto, Oct 23 2006

Keywords

Comments

Terms which are squarefree appear on A121556.

Crossrefs

Programs

  • Maple
    isA122839 := proc(m)
        A047994(m) ;
        modp(numtheory[sigma](m)*A034448(m),%^2) = 0 ;
    end proc:
    for m from 1 do
        if isA122839(m) then
            printf("%a,\n", m) ;
        end if;
    end do: # R. J. Mathar, Sep 04 2018
  • Mathematica
    f[p_, e_] := (p^(e+1)-1)*(p^e+1)/(p-1)/(p^e-1)^2; seqQ[1] = True; seqQ[n_] := IntegerQ [Times @@ (f @@@ FactorInteger[n])]; Select[Range[27170], seqQ] (* Amiram Eldar, Dec 11 2019 *)
  • PARI
    isok(m) = ((sigma(m)*usigma(m)) % uphi(m)^2) == 0; \\ Michel Marcus, Jan 24 2019

Extensions

More terms from Michel Marcus, Jan 24 2019

A123041 Numbers m such that UnitarySigma(m)^2 = k*Sigma(m)*UnitaryPhi(m), for some integer k.

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 70, 78, 105, 190, 210, 357, 418, 570, 714, 910, 1045, 1254, 1976, 2090, 2730, 3135, 4522, 4674, 5278, 5412, 5928, 6270, 8580, 10659, 12441, 12628, 13566, 14630, 15834, 16770, 17220, 20026, 21318, 23374, 24871, 24882
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 24 2006

Keywords

Comments

Terms which are squarefree appear on A121556.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*(p^e + 1)^2/((p^e - 1)*(p^(e + 1) - 1)); q[1] = True; q[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[25000], q] (* Amiram Eldar, Sep 12 2022 *)
  • PARI
    A047994(n)={ local(i,resul,rmax); if(n==1, return(1) ); i=factor(n); rmax=matsize(i)[1]; resul=1; for(r=1,rmax, resul *= i[r,1]^i[r,2]-1; ); return(resul); }
    A034448(n)={ sumdiv(n, d, if(gcd(d, n/d)==1, d)) }
    isA123041(n)={ local(s); s=(A034448(n))^2; if( s % (sigma(n)*A047994(n)) == 0, return(s/sigma(n)/A047994(n)), return(0) ); }
    { for(n=1,30000, k=isA123041(n); if( k, print1(n,",") ); ); } \\ R. J. Mathar, Sep 27 2006
    
  • PARI
    is(n) = {my(f=factor(n), p=f[,1], e=f[,2]); denominator(prod(i=1, #p, (p[i] - 1)*(p[i]^e[i] + 1)^2/((p[i]^e[i] - 1)*(p[i]^(e[i] + 1) - 1)))) == 1}; \\ Amiram Eldar, Sep 12 2022

Extensions

More terms from R. J. Mathar, Sep 27 2006
Showing 1-3 of 3 results.