A121586 Number of columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1, 1, 3, 13, 70, 446, 3276, 27252, 253296, 2602224, 29288160, 358457760, 4740577920, 67375532160, 1024208720640, 16583626886400, 284953145702400, 5178968115148800, 99268112350310400, 2001336861359001600, 42337994134947840000, 937755916997437440000
Offset: 0
Keywords
Examples
a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns.
Links
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Programs
-
Maple
a[0] := 1; a[1] := 1: for n from 2 to 22 do a[n] := n*a[n-1] + (n-1)!*(n-1) od: seq(a[n], n = 0..22); # Second program: egf := (1 - (x - 1)*log(1 - x))/(x - 1)^2: ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Dec 09 2021
-
Mathematica
Join[{1}, Table[CoefficientList[Series[((x-1)Log[1-x]-x-1)/(x-1)^3, {x, 0, 20}],x][[n]] (n-1)!, {n, 1, 20}]] (* Benedict W. J. Irwin, Sep 27 2016 *)
Formula
a(n) = (n+1)! - |s(n+1,2)|, where s(n,k) are the signed Stirling numbers of the first kind (A008275).
Recurrence relation: a(n) = n*a(n-1) + (n-1)!*(n-1); (see the Barcucci et al. reference, p. 34).
a(n) = Sum_{k=1..n} k*A094638(n,k).
From Emeric Deutsch, Nov 10 2008: (Start)
a(n) = (n-1)!*(n^2 + n - 1 - n*H(n-1)) for n >= 1, where H(j) = 1/1+1/2+...+1/j.
a(n) = Sum_{k=1..n} k*A145888(n,k) for n >= 1. (End)
From Gary Detlefs, Sep 12 2010: (Start)
a(n) = n!*((n+1) - h(n)), where h(n) = Sum_{k=1..n} 1/k.
a(n) = (n+1)! - A000254(n). (End)
E.g.f.: (1 - (x - 1)*log(1 - x))/(x - 1)^2. - Benedict W. J. Irwin, Sep 27 2016
a(n) = Sum_{k=0..n*(n-1)/2} (k+1) * A129177(n,k). - Alois P. Heinz, May 04 2023
Extensions
a(0) = 1 prepended by Peter Luschny, Dec 09 2021
Comments