cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121589 Series expansion of (eta(q^9) / eta(q))^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 429, 810, 1476, 2631, 4572, 7802, 13056, 21519, 34918, 55935, 88452, 138332, 213990, 327852, 497592, 748833, 1117692, 1655719, 2434938, 3556791, 5161808, 7445631, 10677096, 15226658, 21599469, 30485268, 42817788
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 3*q^2 + 9*q^3 + 22*q^4 + 51*q^5 + 108*q^6 + 221*q^7 + 429*q^8 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    S:= series(q*Product(1-q^(9*k),k=1..N/9)/Product((1-q^k)^3, k=1..N),q,N+1):
    seq(coeff(S,q,n),n=1..N); # Robert Israel, Nov 02 2017
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(9*k))/(1-x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    QP = QPochhammer; s = (QP[q^9]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9] / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Nov 02 2017 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A) / eta(x + A))^3, n))};

Formula

Euler transform of period 9 sequence [3, 3, 3, 3, 3, 3, 3, 3, 0, ...].
G.f.: x * (Product_{k>0} (1 - x^(9*k) / (1 - x^k))^3.
Expansion of c(q^3) / (3 * b(q)) = (c(q) / (3 * b(q^3))^3 in powers of q where b(), c() are cubic AGM functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u^2 - v) - 2 * u * v * ( 3 * (u + v) + 13 * u * v ).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v * (1 + 9 * v + 27 * v^2) * (1 + 9 * u + 27 * u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + 3 * (u1 + u2)) * (u3 + u6 + 9 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A131986.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (27 * sqrt(6) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (3/(n-1))*Sum_{k=1..n-1} A116607(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
Convolution inverse of A131986. Convolution cube of A104502. - Michael Somos, Nov 02 2017

Extensions

Second formula corrected by Vaclav Kotesovec, Sep 07 2015