cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121590 Expansion of (eta(q^3) / eta(q))^12 in powers of q.

Original entry on oeis.org

1, 12, 90, 508, 2391, 9828, 36428, 124188, 395199, 1186344, 3387252, 9257364, 24343037, 61848096, 152356032, 364959196, 852243948, 1944226476, 4341094220, 9502198728, 20419293123, 43131708720, 89656112256, 183580652340
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 12*q^2 + 90*q^3 + 508*q^4 + 2391*q^5 + 9828*q^6 + 36428*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] / QPochhammer[ q])^12, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(3*k)) / (1 - x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^12, n))};

Formula

Expansion of (c(q) / (3 * b(q)))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Euler transform of period 3 sequence [ 12, 12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^3 + v^3 - u*v - 24*u*v * (u + v) - 729*u^2*v^2.
G.f.: x * (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^12.
Convolution inverse of A030182. - Michael Somos, Jun 16 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^-6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030182.
Convolution 12th power of A000726, cube of A128758, square of A121596. - Michael Somos, Aug 09 2015
a(n) ~ exp(4*Pi*sqrt(n/3)) / (729 * sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (12/(n-1))*Sum_{k=1..n-1} A046913(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017