A121591 Expansion of (eta(q^5) / eta(q))^6 in powers of q.
1, 6, 27, 98, 315, 912, 2456, 6210, 14937, 34390, 76317, 163896, 342062, 695736, 1382880, 2691586, 5139906, 9644622, 17808040, 32393370, 58113312, 102914152, 180062622, 311488920, 533124225, 903324372, 1516110165, 2521780688, 4158863310, 6803237280, 11043320922, 17794350786
Offset: 1
Keywords
Examples
G.f. = q + 6*q^2 + 27*q^3 + 98*q^4 + 315*q^5 + 912*q^6 + 2456*q^7 + 6210*q^8 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^5] / QPochhammer[ q])^6, {q, 0, n}]; (* Michael Somos, May 22 2013 *) nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(5*k)) / (1 - x^k))^6, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^6, n))};
Formula
Euler transform of period 5 sequence [6, 6, 6, 6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (1 + 125 * u*v) - (u+v) * (u^2 - 13 * u*v + v^2). - Michael Somos, May 22 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 1/125 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106248. - Michael Somos, May 22 2013
G.f.: x * (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^6.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (125 * sqrt(2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (6/(n-1))*Sum_{k=1..n-1} A116073(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 31 2017