cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121591 Expansion of (eta(q^5) / eta(q))^6 in powers of q.

Original entry on oeis.org

1, 6, 27, 98, 315, 912, 2456, 6210, 14937, 34390, 76317, 163896, 342062, 695736, 1382880, 2691586, 5139906, 9644622, 17808040, 32393370, 58113312, 102914152, 180062622, 311488920, 533124225, 903324372, 1516110165, 2521780688, 4158863310, 6803237280, 11043320922, 17794350786
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Examples

			G.f. = q + 6*q^2 + 27*q^3 + 98*q^4 + 315*q^5 + 912*q^6 + 2456*q^7 + 6210*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^5] / QPochhammer[ q])^6, {q, 0, n}]; (* Michael Somos, May 22 2013 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(5*k)) / (1 - x^k))^6, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^6, n))};

Formula

Euler transform of period 5 sequence [6, 6, 6, 6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (1 + 125 * u*v) - (u+v) * (u^2 - 13 * u*v + v^2). - Michael Somos, May 22 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 1/125 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106248. - Michael Somos, May 22 2013
G.f.: x * (Product_{k>0} (1 - x^(5*k)) / (1 - x^k))^6.
Convolution inverse of A106248, 6th power of A035959. - Michael Somos, Aug 09 2015
a(n) ~ exp(4*Pi*sqrt(n/5)) / (125 * sqrt(2) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (6/(n-1))*Sum_{k=1..n-1} A116073(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 31 2017