A121608 Primes that can be written as concatenation of two composite numbers in decimal representation.
89, 109, 149, 229, 269, 349, 359, 389, 409, 421, 433, 439, 449, 457, 463, 487, 491, 499, 509, 569, 659, 677, 691, 709, 769, 809, 821, 827, 829, 839, 857, 859, 863, 877, 881, 887, 919, 929, 977, 991, 1009, 1021, 1033, 1039, 1049, 1051, 1063, 1069, 1087, 1091
Offset: 1
Examples
A000040(169) = 1009 = 100*10+9 = A002808(74)*10+A002808(4), therefore 1009 is a term: a(41) = 1009; A000040(172) = 1021 = 10*100+21 = A002808(5)*100+A002808(12), therefore 1021 is a term: a(42) = 1021.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import isprime def comp(s): i=int(s); return s[0]!='0' and i > 1 and not isprime(i) def ok(n): s = str(n) for i in range(1, len(s)): if comp(s[:i]) and comp(s[i:]) and isprime(int(s)): return True print([m for m in range(1092) if ok(m)]) # Michael S. Branicky, Feb 27 2021