cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262207 a(n) = prime(n)^n mod n^n.

Original entry on oeis.org

0, 1, 17, 97, 1676, 21241, 214259, 5020449, 34808102, 7233300201, 46070142226, 7806783217105, 165239209697109, 1608006723911113, 48560388990668468, 4867006141797699265, 530779430908845468654, 18442832496573633213385
Offset: 1

Views

Author

Altug Alkan, Sep 15 2015

Keywords

Comments

Inspired by A002380, A067602, A138654.
a(3), a(4), a(7) and a(48) are prime numbers.
There are no further prime numbers up to a(1000). - Harvey P. Dale, Jun 15 2025

Examples

			For n = 1, a(n) = prime(1)^1 mod 1^1 = 2^1 mod 1 = 2 mod 1 = 0.
For n = 2, a(n) = prime(2)^2 mod 2^2 = 3^2 mod 4 = 9 mod 4 = 1.
For n = 3, a(n) = prime(3)^3 mod 3^3 = 5^3 mod 27 = 125 mod 27 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[n]^n, n^n], {n, 18}] (* Michael De Vlieger, Sep 15 2015 *)
    Table[PowerMod[Prime[n],n,n^n],{n,20}] (* Harvey P. Dale, Jun 15 2025 *)
  • PARI
    a(n) = (prime(n)^n) % (n^n);
    vector(18, n, a(n))

Formula

a(n) = A062457(n) mod A000312(n). - Michel Marcus, Sep 15 2015

A121624 Numbers k such that floor((prime(k)/k)^k) is prime.

Original entry on oeis.org

1, 2, 6, 9, 26, 179, 289, 25564, 109436
Offset: 1

Views

Author

Jason Earls, Aug 11 2006

Keywords

Comments

a(9) > 39637. - J.W.L. (Jan) Eerland, Nov 11 2024

Crossrefs

Cf. A121623.

Programs

  • Mathematica
    fQ[n_] := PrimeQ[Floor[(Prime[n]/n)^n]]; Do[ If[fQ@n, Print@n], {n, 10000}] (* Robert G. Wilson v Aug 17 2006 *)
    n=1;Monitor[Parallelize[While[True,If[PrimeQ[Floor[(Prime[n]/n)^n]],Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Nov 11 2024 *)

Extensions

a(8) from J.W.L. (Jan) Eerland, Nov 11 2024
a(9) from Michael S. Branicky, Mar 02 2025
Showing 1-2 of 2 results.