cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121682 Triangle read by rows: T(i,j) = (T(i-1,j) + i)*i.

Original entry on oeis.org

1, 6, 4, 27, 21, 9, 124, 100, 52, 16, 645, 525, 285, 105, 25, 3906, 3186, 1746, 666, 186, 36, 27391, 22351, 12271, 4711, 1351, 301, 49, 219192, 178872, 98232, 37752, 10872, 2472, 456, 64, 1972809, 1609929, 884169, 339849, 97929, 22329, 4185, 657, 81, 19728190, 16099390, 8841790, 3398590, 979390, 223390, 41950, 6670, 910, 100
Offset: 1

Views

Author

Thomas Wieder, Aug 15 2006

Keywords

Comments

The first column is A030297 = a(n) = n*(n+a(n-1)). The main diagonal are the squares A000290 = n^2. The first lower diagonal (6,21,52,...) is A069778 = q-factorial numbers 3!_q. See also A121662.

Examples

			Triangle begins:
      1
      6     4
     27    21     9
    124   100    52   16
    645   525   285  105  25
   3906  3186  1746  666  186  36
  27391 22351 12271 4711 1351 301 49
  ...
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Row sums give A337001.

Programs

  • Maple
    T:= proc(i, j) option remember;
          `if`(j<1 or j>i, 0, (T(i-1, j)+i)*i)
        end:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Jun 22 2022
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = (T[n-1, k]+n)*n;
    T[, ] = 0;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2022 *)
  • Python
    def T(i, j): return (T(i-1, j)+i)*i if 1 <= j <= i else 0
    print([T(r, c) for r in range(1, 11) for c in range(1, r+1)]) # Michael S. Branicky, Jun 22 2022

Extensions

Edited by N. J. A. Sloane, Sep 15 2006
Formula in name corrected by Alois P. Heinz, Jun 22 2022