A121682 Triangle read by rows: T(i,j) = (T(i-1,j) + i)*i.
1, 6, 4, 27, 21, 9, 124, 100, 52, 16, 645, 525, 285, 105, 25, 3906, 3186, 1746, 666, 186, 36, 27391, 22351, 12271, 4711, 1351, 301, 49, 219192, 178872, 98232, 37752, 10872, 2472, 456, 64, 1972809, 1609929, 884169, 339849, 97929, 22329, 4185, 657, 81, 19728190, 16099390, 8841790, 3398590, 979390, 223390, 41950, 6670, 910, 100
Offset: 1
Examples
Triangle begins: 1 6 4 27 21 9 124 100 52 16 645 525 285 105 25 3906 3186 1746 666 186 36 27391 22351 12271 4711 1351 301 49 ...
References
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
Programs
-
Maple
T:= proc(i, j) option remember; `if`(j<1 or j>i, 0, (T(i-1, j)+i)*i) end: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jun 22 2022
-
Mathematica
T[n_, k_] /; 1 <= k <= n := T[n, k] = (T[n-1, k]+n)*n; T[, ] = 0; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2022 *)
-
Python
def T(i, j): return (T(i-1, j)+i)*i if 1 <= j <= i else 0 print([T(r, c) for r in range(1, 11) for c in range(1, r+1)]) # Michael S. Branicky, Jun 22 2022
Extensions
Edited by N. J. A. Sloane, Sep 15 2006
Formula in name corrected by Alois P. Heinz, Jun 22 2022
Comments