A121688 G.f.: Sum_{n>=0} x^n * (1+x)^(2^n).
1, 2, 3, 6, 15, 49, 210, 1191, 8981, 90405, 1219297, 22105506, 540476679, 17875316557, 802011318369, 48947781204529, 4073596070782653, 463360670014324153, 72183972733773232361, 15430254274957714069057
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A136501.
Programs
-
Magma
[(&+[Binomial(2^k, n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 15 2021
-
Maple
A121688:= n-> add(binomial(2^k,n-k), k=0..n); seq(A121688(n), n=0..20); # G. C. Greubel, Mar 15 2021
-
Mathematica
Table[Sum[Binomial[2^k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Oct 05 2020 *)
-
PARI
a(n)=sum(k=0,n,binomial(2^k,n-k))
-
Sage
[sum(binomial(2^k, n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 15 2021
Formula
a(n) = Sum_{k=0..n} C(2^k,n-k).
Lim_{n->infinity} a(n)^(1/n^2) = 2^(1/4). - Vaclav Kotesovec, Oct 05 2020
G.f.: Sum_{n>=0} ( log(1 + x)^n / n! ) / (1 - 2^n*x). - Paul D. Hanna, Jan 23 2021