cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374794 Number of deco polyominoes of height 2n and vertical height n.

Original entry on oeis.org

1, 1, 10, 216, 8181, 489753, 43073059, 5251140144, 847811871333, 175006259417547, 44939475107574752, 14046429669829943012, 5249989348656458769520, 2312011774544840687484876, 1184766852578716585055014620, 698927709348312453031204116720
Offset: 0

Views

Author

Alois P. Heinz, Jul 20 2024

Keywords

Crossrefs

Cf. A121692.

Formula

a(n) = A121692(2n,n).

A121693 Number of deco polyominoes of height n and vertical height 3 (i.e., having 3 rows).

Original entry on oeis.org

0, 0, 1, 12, 57, 216, 741, 2412, 7617, 23616, 72381, 220212, 666777, 2012616, 6062421, 18236412, 54807537, 164619216, 494250861, 1483539012, 4452189897, 13359715416, 40085437701, 120268896012, 360831853857, 1082545893216
Offset: 1

Views

Author

Emeric Deutsch, Aug 17 2006

Keywords

Comments

A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Crossrefs

Cf. A121692.

Programs

  • Maple
    a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=3*(a[n-1]+2^(n-2)-1) od: seq(a[n],n=1..30);

Formula

a(n) = A121692(n,3).
a(n) = 23*3^(n-3)/2 + 3/2 - 3*2^(n-1) for n >= 3.
Recurrence relation: a(n) = 3(a(n-1) + 2^(n-2) - 1) for n >= 4, a(1) = a(2) = 0, a(3) = 1.
G.f. = x^3*(1+6x-4x^2)/((1-x)(1-2x)(1-3x)).

A121694 Sum of the vertical heights (i.e., number of rows) of all deco polyominoes of height n.

Original entry on oeis.org

1, 3, 12, 61, 377, 2734, 22671, 211035, 2175754, 24592551, 302295925, 4014475756, 57277225309, 873819665135, 14195291340656, 244657733062761, 4459137940238245, 85694418205589534, 1731893273528613811, 36721566227335477047, 815098440677104096866
Offset: 1

Views

Author

Emeric Deutsch, Aug 17 2006

Keywords

Comments

A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Examples

			a(2)=3 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 rows.
		

Crossrefs

Cf. A121692.

Programs

  • Maple
    with(linalg): a:=proc(i,j) if i=j then i elif i>j then 1 else 0 fi end: p:=proc(Q) local n,A,b,w,QQ: n:=degree(Q): A:=matrix(n,n,a): b:=j->coeff(Q,t,j): w:=matrix(n,1,b): QQ:=multiply(A,w): sort(expand(add(QQ[k,1]*t^k,k=1..n)+t*Q)): end: P[1]:=t: for n from 2 to 22 do P[n]:=p(P[n-1]) od: seq(subs(t=1,diff(P[n],t)),n=1..22);
  • Mathematica
    (* T is A121692 *)
    T[n_, k_] := T[n, k] = Which[k == 1, 1, k == n, 1, k > n, 0, True, k*T[n-1, k] + 2*T[n-1, k-1] + Sum[T[n-1, j], {j, 1, k-2}]];
    a[n_] := Sum[k*T[n, k], {k, 1, n}];
    Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Aug 20 2024 *)

Formula

a(n) = Sum_{k=1..n} k*A121692(n,k).
a(n) = Sum_{k=1..n} k*T(n,k), where T(n,k) (A121692) is defined by T(n,1)=1; T(n,n)=1; T(n,k) = k*T(n-1,k) + 2*T(n-1,k-1) + Sum_{j=1..k-2} T(n-1,j) for k <= n; T(n,k)=0 for k > n.
Showing 1-3 of 3 results.