A121704 Number of separable involutions.
1, 2, 4, 10, 24, 64, 166, 456, 1234, 3454, 9600, 27246, 77132, 221336, 635078, 1839000, 5331274, 15555586, 45465412, 133517130, 392841336, 1160033656, 3432015726, 10182891552, 30267591290, 90177226062, 269117947728, 804699330974, 2409839825756, 7228746487536
Offset: 1
Keywords
Examples
a(5) = 24 because of the 26 involutions of length 5 only two are not separable, 35142 and 42513.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
- Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013-2014.
- R. Brignall, S. Huczynska and V. Vatter, Simple permutations and algebraic generating functions, arXiv:math/0608391 [math.CO], 2006.
Crossrefs
Cf. A121703.
Programs
-
Mathematica
terms = 30; f[] = 0; Do[f[x] = Normal[(-(x^3 f[x]^3) - 3 x^3 f[x]^2 - x^2 f[x]^4 - 3 x^2 f[x]^3 - 6 x^2 f[x]^2 - x f[x]^3 + f[x]^3 + x f[x]^2 - x^3 - 3 x^2 - x)/(3 x^3 + 7 x^2 - x - 1) + O[x]^(terms+1)], {terms+1}]; CoefficientList[f[x]/x, x] (* Jean-François Alcover, Nov 05 2018 *)
Formula
G.f. f satisfies: x^2f^4 + (x^3+3x^2+x-1)f^3 + (3x^3+6x^2-x)f^2 + (3x^3+7x^2-x-1)f +x^3+3x^2+x=0.
a(n) ~ sqrt(6 + 6*sqrt(2) + 4*sqrt(3) + 3*sqrt(6)) * (5+2*sqrt(6))^(n/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 13 2014
Comments