cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121704 Number of separable involutions.

Original entry on oeis.org

1, 2, 4, 10, 24, 64, 166, 456, 1234, 3454, 9600, 27246, 77132, 221336, 635078, 1839000, 5331274, 15555586, 45465412, 133517130, 392841336, 1160033656, 3432015726, 10182891552, 30267591290, 90177226062, 269117947728, 804699330974, 2409839825756, 7228746487536
Offset: 1

Views

Author

Vincent Vatter, Aug 16 2006

Keywords

Comments

The separable permutations are those avoiding 2413 and 3142 and are counted by the large Schroeder numbers (A006318).
The involutions avoiding 2413 coincide with the involutions avoiding 3142, and hence both sets coincide with the separable involutions. - David Callan, Aug 27 2014

Examples

			a(5) = 24 because of the 26 involutions of length 5 only two are not separable, 35142 and 42513.
		

Crossrefs

Cf. A121703.

Programs

  • Mathematica
    terms = 30;
    f[] = 0; Do[f[x] = Normal[(-(x^3 f[x]^3) - 3 x^3 f[x]^2 - x^2 f[x]^4 - 3 x^2 f[x]^3 - 6 x^2 f[x]^2 - x f[x]^3 + f[x]^3 + x f[x]^2 - x^3 - 3 x^2 - x)/(3 x^3 + 7 x^2 - x - 1) + O[x]^(terms+1)], {terms+1}];
    CoefficientList[f[x]/x, x] (* Jean-François Alcover, Nov 05 2018 *)

Formula

G.f. f satisfies: x^2f^4 + (x^3+3x^2+x-1)f^3 + (3x^3+6x^2-x)f^2 + (3x^3+7x^2-x-1)f +x^3+3x^2+x=0.
a(n) ~ sqrt(6 + 6*sqrt(2) + 4*sqrt(3) + 3*sqrt(6)) * (5+2*sqrt(6))^(n/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 13 2014