A121722 Triangle T(n,k) = 1 + k*n*(n+1)/2, read by rows.
1, 1, 2, 1, 4, 7, 1, 7, 13, 19, 1, 11, 21, 31, 41, 1, 16, 31, 46, 61, 76, 1, 22, 43, 64, 85, 106, 127, 1, 29, 57, 85, 113, 141, 169, 197, 1, 37, 73, 109, 145, 181, 217, 253, 289, 1, 46, 91, 136, 181, 226, 271, 316, 361, 406, 1, 56, 111, 166, 221, 276, 331, 386, 441, 496, 551
Offset: 0
Examples
Triangle begins as: 1; 1, 2; 1, 4, 7; 1, 7, 13, 19; 1, 11, 21, 31, 41; 1, 16, 31, 46, 61, 76;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> 1 + k*Binomial(n+1,2) ))); # G. C. Greubel, Nov 21 2019
-
Magma
[1+k*Binomial(n+1,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 21 2019
-
Maple
seq(seq( 1 + k*binomial(n+1,2), k=0..n), n=0..10); # G. C. Greubel, Nov 21 2019
-
Mathematica
f[n_Integer] = Module[{a}, a[n]/.RSolve[{a[n]==2*a[n-1]-a[n-2]+m, a[0] ==1, a[1]==1+m}, a[n], n][[1]]//FullSimplify] (* formula of triangle *) Table[Table[1+k*n*(1+n)/2, {k,0,n}], {n,0,10}]//Flatten
-
PARI
T(n, k) = 1 + k*binomial(n+1,2); \\ G. C. Greubel, Nov 21 2019
-
Sage
[[1+k*binomial(n+1,2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 21 2019
Formula
T(n, k) = 1 + k*binomial(n+1,2).
Extensions
Edited by G. C. Greubel, Nov 21 2019
Comments