cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121724 Generalized central binomial coefficients for k=2.

Original entry on oeis.org

1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289, 71445, 185193, 925965, 2467137, 12335685, 33563481, 167817405, 464221105, 2321105525, 6507351113, 32536755565, 92236247841, 461181239205, 1319640776249, 6598203881245, 19031570387857, 95157851939285
Offset: 0

Views

Author

Paul Barry, Aug 17 2006, Feb 28 2007

Keywords

Comments

Hankel transform is 4^binomial(n+1,2) = A053763(n+1). Case k=2 of T(n,k) = (1/Pi)*2*k^2*(2*k)^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(1+k^2-2*k*x) dx. T(n,k) has Hankel transform (k^2)^binomial(n+1,2). k=1 corresponds to C(n,floor(n/2)).
Series reversion of x*(1+x)/(1+2*x+5*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-16*x^2)+2*x-1)/(2*x*(1-5*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    CoefficientList[Series[(Sqrt[1-16*x^2]+2*x-1)/(2*x*(1-5*x)), {x,0,40}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A121724(n): return sum(4^(n-k)*A120730(n,k) for k in range(n+1))
    [A121724(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-16*x^2) + 2*x - 1)/(2*x*(1-5*x)) = c(4*x^2)/(1-x*c(4*x^2)), c(x) the g.f. of A000108.
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n-2*k+j)*2^j*5^(k-j).
a(n) = (1/Pi)*8*4^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(5-4*x) dx.
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*2^2k. - Philippe Deléham, Aug 18 2006
a(n) = Sum_{k=0..n} 4^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
Conjecture: (n+1)*a(n) = 5*(n+1)*a(n-1) + 16*(n-2)*a(n-2) - 80*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
a(n) ~ (9+(-1)^n) * 2^(2*n+5/2) / (9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Vincenzo Librandi, Feb 15 2014