A121725 Generalized central coefficients for k=3.
1, 1, 10, 19, 190, 442, 4420, 11395, 113950, 312814, 3128140, 8960878, 89608780, 264735892, 2647358920, 8006545891, 80065458910, 246643289830, 2466432898300, 7711583225338, 77115832253380, 244082045341036, 2440820453410360, 7805301802531534
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-36*x^2))/(18*x^2-x*(1-Sqrt(1-36*x^2))) )); // G. C. Greubel, Nov 07 2022 -
Mathematica
CoefficientList[Series[(1-Sqrt[1-4*9*x^2])/(2*9*x^2-x*(1-Sqrt[1-4*9*x^2])), {x,0,40}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A121725(n): return sum(9^(n-k)*A120730(n,k) for k in range(n+1)) [A121725(n) for n in range(41)] # G. C. Greubel, Nov 07 2022
Formula
a(n) = (1/Pi)*18*6^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(10-6*x) dx.
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^2k. - Philippe Deléham, Aug 18 2006
a(n) = Sum_{k=0..n} A120730(n,k)*9^(n-k). - Philippe Deléham, Nov 09 2007
Conjecture: (n+1)*a(n) = 10*(n+1)*a(n-1) + 36*(n-2)*a(n-2) - 360*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
From Vaclav Kotesovec, Feb 13 2014: (Start)
a(n) ~ (4+(-1)^n) * 2^(n-7/2) * 3^(n+2) / (n^(3/2) * sqrt(Pi)).
G.f.: (1 - sqrt(1 - 36*x^2))/(18*x^2 - x*(1 - sqrt(1 - 36*x^2))). (End)
Extensions
More terms from Vincenzo Librandi, Feb 15 2014
Comments