cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121726 Sum sequence A000522 then subtract 0,1,2,3,4,5,...

Original entry on oeis.org

1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
Offset: 1

Views

Author

Alford Arnold, Aug 17 2006

Keywords

Comments

Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - Peter Luschny, Nov 19 2020

Examples

			A000522 begins     1 2 5 16 65 326 ...
with sums          1 3 8 24 89 415 ...
so sequence begins 1 2 6 21 85 410 ...
.
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of a(5):
5! / aut([5])             = 120 / A339033(5, 1) = 120/5   = 24
5! / aut([4, 1])          = 120 / A339033(5, 2) = 120/4   = 30
5! / aut([3, 1, 1])       = 120 / A339033(5, 3) = 120/6   = 20
5! / aut([2, 1, 1, 1])    = 120 / A339033(5, 4) = 120/12  = 10
5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 =  1
--------------------------------------------------------------
                                                Sum: a(5) = 85
(End)
		

Crossrefs

Also the row sums of A092271.

Programs

  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
  • PARI
    A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ R. J. Mathar, Sep 02 2006
    
  • SageMath
    def A121726(n):
        def h(n, k):
            if n == k: return 1
            return factorial(n)//((n + 1 - k)*factorial(k - 1))
        return sum(h(n, k) for k in (1..n))
    print([A121726(n) for n in (1..23)])
    # Demonstrates the combinatorial view:
    def A121726(n):
        if n == 0: return 1
        f = factorial(n); S = 0
        for k in (0..n):
            for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
                S += (f // p.aut())
        return S
    print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020

Formula

a(n) = A006231(n) + 1 = A002104(n) - (n-1). - Franklin T. Adams-Watters, Aug 29 2006
E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - Geoffrey Critzer, Nov 07 2015

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006
More terms from R. J. Mathar, Sep 02 2006