A121726 Sum sequence A000522 then subtract 0,1,2,3,4,5,...
1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
Offset: 1
Examples
A000522 begins 1 2 5 16 65 326 ... with sums 1 3 8 24 89 415 ... so sequence begins 1 2 6 21 85 410 ... . From _Peter Luschny_, Nov 19 2020: (Start): The combinatorial interpretation is illustrated by this computation of a(5): 5! / aut([5]) = 120 / A339033(5, 1) = 120/5 = 24 5! / aut([4, 1]) = 120 / A339033(5, 2) = 120/4 = 30 5! / aut([3, 1, 1]) = 120 / A339033(5, 3) = 120/6 = 20 5! / aut([2, 1, 1, 1]) = 120 / A339033(5, 4) = 120/12 = 10 5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 = 1 -------------------------------------------------------------- Sum: a(5) = 85 (End)
Programs
-
Mathematica
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
-
PARI
A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ R. J. Mathar, Sep 02 2006
-
SageMath
def A121726(n): def h(n, k): if n == k: return 1 return factorial(n)//((n + 1 - k)*factorial(k - 1)) return sum(h(n, k) for k in (1..n)) print([A121726(n) for n in (1..23)]) # Demonstrates the combinatorial view: def A121726(n): if n == 0: return 1 f = factorial(n); S = 0 for k in (0..n): for p in Partitions(n, max_part=k, inner=[k], length=n+1-k): S += (f // p.aut()) return S print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020
Formula
E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - Geoffrey Critzer, Nov 07 2015
Extensions
More terms from Franklin T. Adams-Watters, Aug 29 2006
More terms from R. J. Mathar, Sep 02 2006
Comments