A121757 Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.
1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0
Examples
Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720. From _Vincenzo Librandi_, Dec 16 2012: (Start) Triangle begins: 1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc. (End)
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
- J. Goldman, J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 2-rook coefficients of k rooks on the 2xn board (all heights 2).
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a121757 n k = a121757_tabl !! n !! k a121757_row n = a121757_tabl !! n a121757_tabl = iterate (\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1] -- Reinhard Zumkeller, Mar 06 2014
-
Mathematica
Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 25 2011 *)
-
PARI
A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
Formula
a(n,k) = A008279(n,k) * (k+1). a(n,k) = n!*(k+1)/(n-k)!. - Franklin T. Adams-Watters, Sep 20 2006
Comments