cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121757 Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0

Views

Author

Alford Arnold, Aug 19 2006

Keywords

Comments

Row sums are 1,3,11,49,261,1631,... = A001339
a(n,k) = D(n+1,k+1) Array D in A253938 is part of a conjectured formula for F(n,p,r) that relates Dyck path peaks and returns. a(n,k) was discovered prior to array D. - Roger Ford, May 19 2016

Examples

			Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720.
From _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 2,
1, 4,  6,
1, 6,  18,  24,
1, 8,  36,  96,   120,
1, 10, 60,  240,  600,  720,
1, 12, 90,  480,  1800, 4320,  5040,
1, 14, 126, 840,  4200, 15120, 35280,  40320,
1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc.
(End)
		

Crossrefs

Cf. A007526 A000522, A005843 (2nd column), A028896 (3rd column).
Cf. A008279.
Cf. A008277, A132159 (mirrored).

Programs

  • Haskell
    a121757 n k = a121757_tabl !! n !! k
    a121757_row n = a121757_tabl !! n
    a121757_tabl = iterate
       (\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1]
    -- Reinhard Zumkeller, Mar 06 2014
  • Mathematica
    Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
    

Formula

a(n,k) = A007318(n,k)*A000142(k+1), k=0,1,..,n, n=0,1,2,3... - R. J. Mathar, Sep 02 2006
a(n,k) = A008279(n,k) * (k+1). a(n,k) = n!*(k+1)/(n-k)!. - Franklin T. Adams-Watters, Sep 20 2006