cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121839 Decimal expansion of Sum_{k>=1} 1/C(k), where C(k) is a Catalan Number (A000108).

Original entry on oeis.org

1, 8, 0, 6, 1, 3, 3, 0, 5, 0, 7, 7, 0, 7, 6, 3, 4, 8, 9, 1, 5, 2, 9, 2, 3, 6, 7, 0, 0, 6, 3, 1, 8, 0, 3, 2, 5, 4, 5, 9, 5, 8, 4, 9, 9, 9, 1, 5, 2, 3, 2, 9, 1, 4, 4, 6, 9, 7, 7, 2, 6, 6, 3, 7, 9, 5, 0, 2, 7, 6, 9, 6, 9, 3, 8, 9, 4, 9, 0, 6, 1, 4, 9, 7, 0, 7, 2, 2, 2, 1, 6, 9, 8, 3, 1, 3, 7, 8, 5, 2, 8, 2
Offset: 1

Views

Author

Alexander Adamchuk, Aug 28 2006

Keywords

Examples

			1.806133050770763489152923670063180325459584999152...
		

Crossrefs

Cf. A000108, A002390, A268813 (essentially the same).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 1 + 4*Sqrt(3)*Pi(R)/27; // G. C. Greubel, Nov 04 2018
  • Maple
    evalf(1 + Sum((-1)^n*(2*n+1)/(9*n*(n+1)/2+1), n=0..infinity), 120); # Vaclav Kotesovec, May 31 2015
  • Mathematica
    RealDigits[N[Sum[n!(n + 1)!/(2n)!, {n, 1, Infinity}], 150]]
    RealDigits[N[1+4*Sqrt[3]*Pi/27,100]][[1]]
  • PARI
    default(realprecision,100); 1 + 4*sqrt(3)*Pi/27
    

Formula

Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27.
This number is f(1) where f(x) = -1 + 2*(sqrt(4-x)*(8+x) + 12 * sqrt(x) * arctan(sqrt(x)/sqrt(4-x))) / sqrt((4-x)^5). This form corresponds to a generating function of the reciprocal Catalan numbers in the sense of Sprugnoli. - Juan M. Marquez, Mar 05 2009
Equals -1 + hypergeom([1,2],[1/2],1/4); note hypergeom([1,2],[1/2],x/4) = 1/1 + 1/1*x + 1/2*x^2 + 1/5*x^3 + 1/14*x^4 + 1/42*x^5 + ... is the g.f. for the inverse Catalan numbers (including C(0)). - Joerg Arndt, Apr 06 2013
From Vaclav Kotesovec, May 31 2015: (Start)
Equals 1 + Integral_{x=0..1} Product_{k>=1} (1-x^(9*k))^3 dx.
Equals 1 + Sum_{n>=0} (-1)^n * (2*n+1) / (9*n*(n+1)/2 + 1).
(End)
Equals 1 + Integral_{0..inf} x^3 BesselI_0(x) BesselK_0(x)^2 dx. - Jean-François Alcover, Jun 06 2016
From Amiram Eldar, Jul 05 2020: (Start)
Equals 1 + gamma(4/3)*gamma(5/3).
Equals 1 + Integral_{x=0..oo} dx/(1 + x^3)^2. (End)