cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121870 Monthly Problem 10791, second expression.

Original entry on oeis.org

1, 1, 2, 9, 61, 554, 6565, 96677, 1716730, 36072181, 881242577, 24674241834, 783024550969, 27896201305769, 1106485798248706, 48517267642373105, 2337333266369553253, 123040664089658462650, 7043260281573138384701, 436533086101058798529933
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (Sum([0..Int(n/2)], k-> Stirling2(n,2*k)*(-1)^(k)) )^2 + (Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k+1)))^2 ); # G. C. Greubel, Oct 08 2019
  • Magma
    C:= ComplexField(); a:= func< n | Round(Abs( (&+[I^k*StirlingSecond(n,k): k in [0..n]])^2 )) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    A121870a:= proc(a) local i, t:
    i:=1: t:=0: for i to 100 do t:=t+evalf((i^(a-1))*(I)^i/(i)!): od:
    RETURN(round(abs(t^2))):
    end: a:= A121870a(n);
    # Russell Walsmith, Apr 18 2008
    # Alternate:
    seq(abs(BellB(n,I))^2, n=0..30); # Robert Israel, Oct 15 2017
  • Mathematica
    Table[Abs[BellB[n, I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2017 *)
  • PARI
    a(n) = abs( (sum(k=0,n, I^k*stirling(n,k,2)))^2 );
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [abs( sum(I^k*stirling_number2(n,k) for k in (0..n))^2 ) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A121867(n)^2 + A121868(n)^2.
From Gary W. Adamson, Jul 22 2011: (Start)
sqrt(a(n)) = upper left term in M^n as to the modulus of a polar term; M = an infinite square production matrix in which a column of (i, i, i, ...) is appended to the right of Pascal's triangle, as follows (with i = sqrt(-1)):
1, i, 0, 0, 0, ...
1, 1, i, 0, 0, ...
1, 2, 1, i, 0, ...
1, 3, 3, 1, i, ...
... (End)
a(n) = |B_n(i)|^2, where B_n(x) is the n-th Bell polynomial, i = sqrt(-1) is the imaginary unit. - Vladimir Reshetnikov, Oct 15 2017
a(n) ~ (n*exp(-1 + Re(LambertW(i*n)) / Abs(LambertW(i*n))^2) / Abs(LambertW(i*n)))^(2*n) / Abs(1 + LambertW(i*n)), where i is the imaginary unit. - Vaclav Kotesovec, Jul 28 2021