cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121872 Triangle T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2.

Original entry on oeis.org

5, 13, 41, 34, 153, 436, 89, 571, 2089, 5741, 233, 2131, 10009, 33461, 90481, 610, 7953, 47956, 195025, 620166, 1663585, 1597, 29681, 229771, 1136689, 4250681, 13097377, 34988311, 4181, 110771, 1100899, 6625109, 29134601, 103115431, 310957991, 828931049
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 09 2006

Keywords

Examples

			Triangle begins as:
    5;
   13,   41;
   34,  153,   436;
   89,  571,  2089,  5741;
  233, 2131, 10009, 33461, 90481;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | ( k*Sinh((n+1)*Argcosh((k+2)/2))/Sinh(Argcosh((k+2)/2)) + 2*Cosh((n+1)*Argcosh((k+2)/2)) )/2 >;
    [Round(T(n,k)): k in [1..n], n in [1..10]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    seq(seq(simplify(( k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2) )/2), k=1..n), n=1..10); # G. C. Greubel, Oct 09 2019
  • Mathematica
    f[k_]:= Sqrt[k*(k+4)]; T[n_, m_]:= T[n, m]= FullSimplify[((m+f[m])*(m+2 - f[m])^(n+2) - (m-f[m])*(m+2 + f[m])^(n+2))/(2^(n+3)*f[m])]; Table[T[n, m], {n,10}, {m,n}]//Flatten (* modified by G. C. Greubel, Oct 08 2019 *)
    T[n_, k_]:= T[n, k]= (k*ChebyshevU[n, (k+2)/2] + 2*ChebyshevT[n+1, (k+ 2)/2])/2; Table[T[n, k], {n,10}, {k,n}]/Flatten (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    T(n,k)= ( k*sin((n+1)*acos((k+2)/2))/sin(acos((k+2)/2)) + 2*cos((n+1)*acos((k+2)/2)) )/2;
    for(n=1,10, for(k=1,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [[( k*chebyshev_U(n,(k+2)/2) + 2*chebyshev_T(n+1, (k+2)/2) )/2 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Oct 08 2019

Formula

T(n, m) = ((m+f(m))*(m+2 - f(m))^(n+2) - (m-f(m))*(m+2 + f(m))^(n+2))/( 2^(n+3)*f(m)), where f(m) = sqrt(m*(m+4)).
From G. C. Greubel, Oct 08 2019: (Start)
T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2;
T(n, k) = (k*Fibonacci(n+2, m+2, -1) + Lucas(n+2, m+2, -1))/2, where Fibonacci(n, x, y) and Lucas(n, x, y) are the bi-variate Fibonacci an Lucas polynomials, respectively. (End)

Extensions

Major edit and new name, G. C. Greubel, Oct 08 2019