cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121908 S-D transform of Catalan numbers A000108.

Original entry on oeis.org

1, 2, 3, 9, 19, 72, 181, 752, 2051, 8902, 25417, 113249, 333101, 1510888, 4538219, 20853973, 63626003, 295288350, 911918665, 4265460227, 13300767273, 62608960656, 196778953279, 931129725342, 2945833819213, 14000655099890, 44541071348599, 212484364171847
Offset: 0

Views

Author

Philippe Deléham, Sep 01 2006

Keywords

Examples

			1 1 2 5 14 42 132 ... (A000108)
2 1 7 9 56 90 ...
3 6 16 47 146 ...
9 10 63 99 ...
19 53 162 ...
72 109 ...
181 ...
Row 1 : A000108
Row 2 : 1+1=2, 2-1=1, 5+2=7, 14-5=9, 42+14=56, 132-42=90, ...
Row 3 : 1+2=3, 7-1=6, 9+7=16, 56-9=47, 90+56=146, ...
Row 4 : 6+3=9, 16-6=10, 47+16=63, 146-47=99, ...
Row 5 : 10+9=19, 63-10=53, 99+63=162, ...
Row 6 : 53+19=72, 162-53=109, ...
Row 7 : 109+72=181, ...
First diagonal of this triangular array form this sequence.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [1, 2, 3, 9, 19, 72][n+1],
          ((16*n^2+72*n-153)*n *a(n-1)
           +(304*n^4-1276*n^3+1213*n^2+487*n-754) *a(n-2)
           -(288*n^3-768*n^2-294*n+1424) *a(n-3)
           -(560*n^4-3772*n^3+6497*n^2+1253*n-4558) *a(n-4)
           +17*(n-4)*(16*n^2-8*n-29) *a(n-5)
           +17*(n-5)*(n-4)*(16*n^2-4*n-13) *a(n-6)) /
          (n*(n+1)*(16*n^2-36*n+7)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 12 2014
  • Mathematica
    T[n_, k_] := Binomial[Mod[n, 2], Mod[k, 2]] Binomial[Quotient[n, 2], Quotient[k, 2]];
    a[n_] := Sum[T[n, k] CatalanNumber[k], {k, 0, n}];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020 *)

Formula

a(n) = Sum_{k=0..n} A051159(n,k) * A000108(k).
Recurrence: see Maple program.

Extensions

More terms from Alois P. Heinz, Jul 12 2014