A121908 S-D transform of Catalan numbers A000108.
1, 2, 3, 9, 19, 72, 181, 752, 2051, 8902, 25417, 113249, 333101, 1510888, 4538219, 20853973, 63626003, 295288350, 911918665, 4265460227, 13300767273, 62608960656, 196778953279, 931129725342, 2945833819213, 14000655099890, 44541071348599, 212484364171847
Offset: 0
Keywords
Examples
1 1 2 5 14 42 132 ... (A000108) 2 1 7 9 56 90 ... 3 6 16 47 146 ... 9 10 63 99 ... 19 53 162 ... 72 109 ... 181 ... Row 1 : A000108 Row 2 : 1+1=2, 2-1=1, 5+2=7, 14-5=9, 42+14=56, 132-42=90, ... Row 3 : 1+2=3, 7-1=6, 9+7=16, 56-9=47, 90+56=146, ... Row 4 : 6+3=9, 16-6=10, 47+16=63, 146-47=99, ... Row 5 : 10+9=19, 63-10=53, 99+63=162, ... Row 6 : 53+19=72, 162-53=109, ... Row 7 : 109+72=181, ... First diagonal of this triangular array form this sequence.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<6, [1, 2, 3, 9, 19, 72][n+1], ((16*n^2+72*n-153)*n *a(n-1) +(304*n^4-1276*n^3+1213*n^2+487*n-754) *a(n-2) -(288*n^3-768*n^2-294*n+1424) *a(n-3) -(560*n^4-3772*n^3+6497*n^2+1253*n-4558) *a(n-4) +17*(n-4)*(16*n^2-8*n-29) *a(n-5) +17*(n-5)*(n-4)*(16*n^2-4*n-13) *a(n-6)) / (n*(n+1)*(16*n^2-36*n+7))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 12 2014
-
Mathematica
T[n_, k_] := Binomial[Mod[n, 2], Mod[k, 2]] Binomial[Quotient[n, 2], Quotient[k, 2]]; a[n_] := Sum[T[n, k] CatalanNumber[k], {k, 0, n}]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020 *)
Extensions
More terms from Alois P. Heinz, Jul 12 2014