cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121933 Number of labeled digraphs with n arcs for which every vertex has indegree at least one and outdegree at least one.

Original entry on oeis.org

1, 0, 1, 2, 18, 158, 1788, 23930, 370886, 6527064, 128542420, 2800362536, 66858556196, 1735834171276, 48689118113374, 1467253017578672, 47275138863637080, 1621757692715997136, 59013695834307968254, 2270400832166224741596, 92078072790064946096284
Offset: 0

Views

Author

Vladeta Jovovic, Sep 02 2006

Keywords

Crossrefs

Cf. A121252, A086193 (by # of nodes), A367500 (unlabeled version).

Programs

  • Maple
    n:=20: t:=taylor(sum(sum((-1)^(m-k)*binomial(m,k)*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(m-k),k=0..m),m=0..n),x,n+1): seq(coeff(t,x,m),m=0..n); # Nathaniel Johnston, Apr 28 2011
  • Mathematica
    Flatten[{1,Rest[CoefficientList[Series[Sum[Sum[(-1)^(n-k)*Binomial[n,k]*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(n-k),{k,0,n}],{n,1,20}],{x,0,20}],x]]}] (* Vaclav Kotesovec, May 07 2014 *)

Formula

G.f.: Sum(Sum((-1)^(n-k)*binomial(n,k)*((1+x)^(k-1)-1)^k*((1+x)^k-1)^(n-k),k=0..n),n=0..infinity).
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.0722246614111436... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 1/(sqrt(Pi*(1-log(2))) * log(2) * 2^(4+log(2)/2)). - Vaclav Kotesovec, May 04 2015