A367500 The number of digraphs on n unlabeled nodes with each indegree >=1 and each outdegree >=1.
1, 0, 1, 5, 90, 5332, 1076904, 713634480, 1586714659885, 12154215627095823, 328282817968663707661, 31834558934274542784372501, 11234635799120735533158176241587, 14576389568173850099660541344975456791, 70075904848498231395100110985113641934719377
Offset: 0
Keywords
Examples
From _Andrew Howroyd_, Jan 02 2024: (Start) Example of a digraph counted by this sequence but not by A361586: o <---> o ----> o ----> o <---> o In the above example, the 3rd vertex has both an in arc and an out arc, but is not part of any directed cycle. (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- R. J. Mathar, Illustrations (2023), 335 pages
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t)={sum(j=1, #q, gcd(t, q[j]))} a(n) = {if(n==0, 1, sum(k=1, n, my(s=0, m=n-k); forpart(p=k, s += permcount(p) * prod(i=1, #p, 2^(K(p,p[i])-1)-1) * polcoef(exp(sum(t=1, m, (1-2^K(p, t))/t*x^t) + O(x*x^m)), m)); s/k!))} \\ Andrew Howroyd, Jan 02 2024
Extensions
Terms a(6) and beyond from Andrew Howroyd, Jan 02 2024
Comments