A121963 Expansion of x^2*(1 + 2*x + 7*x^2 - 3*x^3 + x^4)/(1 - 26*x^3 - x^6).
0, 1, 2, 7, 23, 53, 182, 599, 1380, 4739, 15597, 35933, 123396, 406121, 935638, 3213035, 10574743, 24362521, 83662306, 275349439, 634361184, 2178432991, 7169660157, 16517753305, 56722920072, 186686513521, 430095947114
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,26,0,0,1).
Programs
-
GAP
a:=[1,2,9];; for n in [7..30] do a[n]:=26*a[n-3]+a[n-6]; od; a; # G. C. Greubel, Oct 05 2019
-
Magma
I:=[0,1,2,7,23,53]; [n le 6 select I[n] else 26*Self(n-3) +Self(n-6): n in [1..30]]; // G. C. Greubel, Oct 05 2019
-
Maple
seq(coeff(series(x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), x, n+1), x, n), n = 1..30); # G. C. Greubel, Oct 05 2019
-
Mathematica
M[n_] := {{0,1}, {1, 1+Mod[n^2-n-1, 3]} }; v[1] = {0,1}; v[n_] := v[n] = M[n].v[n-1]; Table[v[n][[1]], {n,30}] Rest@CoefficientList[Series[x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), {x,0,30}], x] (* G. C. Greubel, Oct 05 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x^2*(1+2*x+7*x^2-3*x^3 +x^4)/( 1-26*x^3-x^6))) \\ G. C. Greubel, Oct 05 2019
-
Sage
def A121963_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6) ).list() a=A121963_list(30); a[1:] # G. C. Greubel, Oct 05 2019
Comments