cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121963 Expansion of x^2*(1 + 2*x + 7*x^2 - 3*x^3 + x^4)/(1 - 26*x^3 - x^6).

Original entry on oeis.org

0, 1, 2, 7, 23, 53, 182, 599, 1380, 4739, 15597, 35933, 123396, 406121, 935638, 3213035, 10574743, 24362521, 83662306, 275349439, 634361184, 2178432991, 7169660157, 16517753305, 56722920072, 186686513521, 430095947114
Offset: 1

Views

Author

Roger L. Bagula, Sep 02 2006

Keywords

Comments

a(n) is a component of the n-th partial product of 2 X 2 matrices with rows (0,1), (1, 1 + A130196(j)), j>=1.
The linear recurrence shows that these are three interleaved sequences (0,7,182,...), (1,23,599,...) and (2,53,1380,...) obeying simple recurrences of the form b(n) = 26*b(n-1) + b(n-2).

Programs

  • GAP
    a:=[1,2,9];; for n in [7..30] do a[n]:=26*a[n-3]+a[n-6]; od; a; # G. C. Greubel, Oct 05 2019
  • Magma
    I:=[0,1,2,7,23,53]; [n le 6 select I[n] else 26*Self(n-3) +Self(n-6): n in [1..30]]; // G. C. Greubel, Oct 05 2019
    
  • Maple
    seq(coeff(series(x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), x, n+1), x, n), n = 1..30); # G. C. Greubel, Oct 05 2019
  • Mathematica
    M[n_] := {{0,1}, {1, 1+Mod[n^2-n-1, 3]} }; v[1] = {0,1}; v[n_] := v[n] = M[n].v[n-1]; Table[v[n][[1]], {n,30}]
    Rest@CoefficientList[Series[x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), {x,0,30}], x] (* G. C. Greubel, Oct 05 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2*(1+2*x+7*x^2-3*x^3 +x^4)/( 1-26*x^3-x^6))) \\ G. C. Greubel, Oct 05 2019
    
  • Sage
    def A121963_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6) ).list()
    a=A121963_list(30); a[1:] # G. C. Greubel, Oct 05 2019