A121969 Numbers k such that if you subtract k-reversed from k you get a natural number with the same digits as k.
954, 1980, 2961, 3870, 5823, 7641, 9108, 19980, 29880, 29961, 32760, 38970, 39780, 49680, 49842, 54270, 58923, 59580, 60273, 60732, 69462, 69480, 69723, 70254, 73260, 76941, 79344, 79380, 89226, 89280, 89604, 90810, 91908, 96732, 99108
Offset: 1
Examples
954 - 459 = 495, 19980 - 8991 = 10989.
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 154 (entry for 1980).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A055161.
Programs
-
Mathematica
srdQ[n_]:=Module[{idn=IntegerDigits[n],rn},rn=FromDigits[Reverse[idn]];n>rn&&Sort[IntegerDigits[n-rn]]==Sort[idn]]; Select[Range[100000], srdQ] (* Harvey P. Dale, Jun 21 2013 *)
-
PARI
isok(n) = {my(d = digits(n)); diff = my(n - subst(Polrev(d), x, 10)); (diff > 0) && (vecsort(digits(diff)) == vecsort(d));} \\ Michel Marcus, Sep 04 2015