cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121990 Expansion of x*(1+9*x+2*x^2)/((1-x)*(1-3*x+x^2)).

Original entry on oeis.org

1, 13, 50, 149, 409, 1090, 2873, 7541, 19762, 51757, 135521, 354818, 928945, 2432029, 6367154, 16669445, 43641193, 114254146, 299121257, 783109637, 2050207666, 5367513373, 14052332465, 36789484034, 96316119649, 252158874925
Offset: 1

Views

Author

Roger L. Bagula, Sep 10 2006

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> 12*F(2*n-1) +F(2*n-3) -12 ); # G. C. Greubel, Nov 21 2019
  • Magma
    F:= Fibonacci; [12*F(2*n-1) +F(2*n-3) -12: n in [1..30]]; // G. C. Greubel, Nov 21 2019
    
  • Maple
    with(combinat); seq(12*fibonacci(2*n-1) +fibonacci(2*n-3) -12, n=1..30); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{4,-4,1}, {1,13,50}, 30] (* G. C. Greubel, Sep 14 2017 *)
    With[{F=Fibonacci}, Table[12*(F[2*n-1]-1) + F[2*n-3], {n,30}]] (* G. C. Greubel, Nov 21 2019 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+9*x+2*x^2)/((1-x)*(x^2-3*x+1))) \\ G. C. Greubel, Sep 14 2017
    
  • PARI
    vector(30, n, 12*fibonacci(2*n-1) +fibonacci(2*n-3) -12) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    f=fibonacci; [12*f(2*n-1) + f(2*n-3) -12 for n in (1..30)] # G. C. Greubel, Nov 21 2019
    

Formula

a(n) = 3*a(n - 1) - a(n - 2) + 12.
a(n) = (1/10)*(-120 + (65 - 11*sqrt(5))*((1/2)*(3 - sqrt(5)))^n + ((1/2)*(3 + sqrt(5)))^n*(65 + 11*sqrt(5))).
From R. J. Mathar, Apr 04 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: x*(1+9*x+2*x^2)/((1-x)*(1-3*x+x^2)). (End)
a(n) = 12*Fibonacci(2*n-1) + Fibonacci(2*n-3) - 12. - G. C. Greubel, Nov 21 2019

Extensions

Edited and new name based on g.f. by G. C. Greubel and Joerg Arndt, Sep 14 2017