A121999 Primes p such that p^2 divides Sierpinski number A014566((p-1)/2).
29, 37, 3373
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Sierpinski Number of the First Kind.
Programs
-
Mathematica
Do[p=Prime[n];f=((p-1)/2)^((p-1)/2)+1;If[IntegerQ[f/p^2],Print[p]],{n,1,3373}]
-
PARI
{ forprime(p=3, 10^11, if(Mod((p-1)/2, p^2)^((p-1)/2)==-1, print(p); )) } \\ Max Alekseyev, Sep 18 2010
Formula
Elements of A125854 that are congruent to 5 or 7 modulo 8, i.e., primes p such that p == 5 or 7 (mod 8) and 2^(p-1) == 1+p (mod p^2). - Max Alekseyev, Sep 18 2010
Comments