cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122032 Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.

Original entry on oeis.org

4, 16, 57, 164, 403, 870, 1535, 3393, 6492, 10075, 16250, 22837, 35092, 53862, 77929, 102925, 130837, 163010, 189773, 245903, 330117, 413691, 508391, 599788, 680172, 767719, 864615, 945420, 1075524, 1189739, 1217843, 1282919, 1376563, 1465693, 1505040
Offset: 1

Views

Author

Jonathan Vos Post, Oct 14 2006

Keywords

Comments

Note that this is nonmonotonic. What is the asymptotic value of the ratio A112141(n)/A002110(n)?
Probably it can be easily proved that a(n) = 0 for n >= 116. - Giovanni Resta, Jun 13 2016

Examples

			a(1) = floor(8/2) = floor(4) = 4.
a(2) = floor(96/6) = floor(4) = 16.
a(3) = floor(1728/30) = floor(57.6) = 57.
a(4) = floor(34560/210) = floor(164.571429) = 164.
a(5) = floor(933120/2310) = floor(403.948052) = 403.
a(6) = floor(26127360/30030) = floor(870.041958) = 870.
a(7) = floor(783820800/510510) = floor(1535.36816) = 1535.
a(8) = floor(32920473600/9699690) = floor(3393.97172) = 3393.
a(9) = floor(1448500838400/223092870) = floor(6492.81547) = 6492.
a(10) = floor(65182537728000/6469693230) = floor(10075.058) = 10075.
a(11) = floor(3259126886400000/200560490130) = floor(16250.0943) = 16250.
a(12) = floor(169474598092800000/7420738134810) = floor(22837.9704) = 22837.
		

Crossrefs

Programs

  • Mathematica
    tp = Select[Range[1000], PrimeOmega[#] == 3 &]; m = 1; Table[ Floor[m *= tp[[i]] / Prime[i]], {i, Length@ tp}] (* Giovanni Resta, Jun 13 2016 *)
    Floor[#[[1]]/#[[2]]]&/@Module[{nn=200,tap,len},tap=FoldList[ Times, Select[ Range[ nn],PrimeOmega[#]==3&]];len=Length[tap];Thread[{tap, FoldList[Times, Prime[ Range[len]]]}]] (* Harvey P. Dale, Sep 08 2019 *)

Formula

a(n) = floor(A114425(n)/A002110(n)) = floor(Prod(i=1..n)3almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014612(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014612(i)/A000040(i))).

Extensions

a(10) corrected by and a(13)-a(35) from Giovanni Resta, Jun 13 2016