A122032 Product of the first n 3-almost primes, divided by product of the first n primes, rounded down.
4, 16, 57, 164, 403, 870, 1535, 3393, 6492, 10075, 16250, 22837, 35092, 53862, 77929, 102925, 130837, 163010, 189773, 245903, 330117, 413691, 508391, 599788, 680172, 767719, 864615, 945420, 1075524, 1189739, 1217843, 1282919, 1376563, 1465693, 1505040
Offset: 1
Examples
a(1) = floor(8/2) = floor(4) = 4. a(2) = floor(96/6) = floor(4) = 16. a(3) = floor(1728/30) = floor(57.6) = 57. a(4) = floor(34560/210) = floor(164.571429) = 164. a(5) = floor(933120/2310) = floor(403.948052) = 403. a(6) = floor(26127360/30030) = floor(870.041958) = 870. a(7) = floor(783820800/510510) = floor(1535.36816) = 1535. a(8) = floor(32920473600/9699690) = floor(3393.97172) = 3393. a(9) = floor(1448500838400/223092870) = floor(6492.81547) = 6492. a(10) = floor(65182537728000/6469693230) = floor(10075.058) = 10075. a(11) = floor(3259126886400000/200560490130) = floor(16250.0943) = 16250. a(12) = floor(169474598092800000/7420738134810) = floor(22837.9704) = 22837.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
tp = Select[Range[1000], PrimeOmega[#] == 3 &]; m = 1; Table[ Floor[m *= tp[[i]] / Prime[i]], {i, Length@ tp}] (* Giovanni Resta, Jun 13 2016 *) Floor[#[[1]]/#[[2]]]&/@Module[{nn=200,tap,len},tap=FoldList[ Times, Select[ Range[ nn],PrimeOmega[#]==3&]];len=Length[tap];Thread[{tap, FoldList[Times, Prime[ Range[len]]]}]] (* Harvey P. Dale, Sep 08 2019 *)
Formula
Extensions
a(10) corrected by and a(13)-a(35) from Giovanni Resta, Jun 13 2016
Comments