A122035 Primes p = Prime[m] such that polynomial (1 + Sum[x^Prime[k],{k,1,m}]) factors over the integers.
5, 17, 41, 461
Offset: 1
Examples
a(1) = 5 because Factor[1+x^2+x^3+x^5] = (x+1)*(x^2+1)*(x^2-x+1), but polynomials (1+x^2) and (1+x^2+x^3) do not factor over the integers. a(2) = 17 because Factor[1+x^2+x^3+x^5+x^7+x^11+x^13+x^17] = (x^2+1)*(x^15-x^13+2x^11-x^9+x^7+x^3+1).
Comments