cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122047 Degree of the polynomial P(n,x), defined by a Somos-6 type sequence: P(n,x)=(x^(n-1)*P(n-1,x)*P(n-5,x) + P(n-2,x)*P(n-4,x))/P(n-6,x), initialized with P(n,x)=1 at n<0.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 22, 31, 42, 55, 70, 88, 109, 133, 160, 190, 224, 262, 304, 350, 400, 455, 515, 580, 650, 725, 806, 893, 986, 1085, 1190, 1302, 1421, 1547, 1680, 1820, 1968, 2124, 2288, 2460, 2640, 2829, 3027
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Maximum Wiener index of all maximal 5-degenerate graphs with n vertices. (A maximal 5-degenerate graph can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to 5 existing vertices.) The extremal graphs are 5th powers of paths, so the bound also applies to 5-trees. - Allan Bickle, Sep 15 2022

Crossrefs

The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623, A014125, A122046, A122047 (this sequence), A175724, respectively.

Programs

  • Mathematica
    p[n_] := p[n] = Cancel[Simplify[(x^(n - 1)p[n - 1]p[n - 5] + p[n - 2]*p[n - 4])/p[n - 6]]];p[ -6] = 1; p[ -5] = 1; p[ -4] = 1; p[ -3] = 1; p[ -2] = 1; p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]

Formula

Conjectures from R. J. Mathar, Jul 15 2008: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8);
o.g.f.: x^2/((x^4+x^3+x^2+x+1)(x-1)^4). (End)
Conjecture: a(n) = (A000292(n+1) - n - 2 - (-1)^floor((n-1)/5)*A099443(n+1))/5. - R. J. Mathar, Jul 15 2008
a(n+2) = A144679(n) + A144679(n-1) + A144679(n-2) + A144679(n-3) + A144679(n-4). - Johannes W. Meijer, May 20 2011
a(n) = floor((n^3 + 6*n^2 + 5*n)/30). - Allan Bickle, Sep 15 2022

Extensions

Edited by N. J. A. Sloane, Jul 15 2008
a(22)-a(43) from R. J. Mathar, Jul 15 2008