cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000292 Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.

Original entry on oeis.org

0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of balls in a triangular pyramid in which each edge contains n balls.
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012).
Also (1/6)*(n^3 + 3*n^2 + 2*n) is the number of ways to color the vertices of a triangle using <= n colors, allowing rotations and reflections. Group is the dihedral group D_6 with cycle index (x1^3 + 2*x3 + 3*x1*x2)/6.
Also the convolution of the natural numbers with themselves. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001
Connected with the Eulerian numbers (1, 4, 1) via 1*a(n-2) + 4*a(n-1) + 1*a(n) = n^3. - Gottfried Helms, Apr 15 2002
a(n) is sum of all the possible products p*q where (p,q) are ordered pairs and p + q = n + 1. E.g., a(5) = 5 + 8 + 9 + 8 + 5 = 35. - Amarnath Murthy, May 29 2003
Number of labeled graphs on n+3 nodes that are triangles. - Jon Perry, Jun 14 2003
Number of permutations of n+3 which have exactly 1 descent and avoid the pattern 1324. - Mike Zabrocki, Nov 05 2004
Schlaefli symbol for this polyhedron: {3,3}.
Transform of n^2 under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
a(n) is a perfect square only for n = {1, 2, 48}. E.g., a(48) = 19600 = 140^2. - Alexander Adamchuk, Nov 24 2006
a(n+1) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4)^n. - Sergio Falcon, Feb 12 2007 [Corrected by Graeme McRae, Aug 28 2007]
a(n+1) is the number of terms in the complete homogeneous symmetric polynomial of degree n in 3 variables. - Richard Barnes, Sep 06 2017
This is also the average "permutation entropy", sum((pi(n)-n)^2)/n!, over the set of all possible n! permutations pi. - Jeff Boscole (jazzerciser(AT)hotmail.com), Mar 20 2007
a(n) = (d/dx)(S(n, x), x)|A049310.%20-%20_Wolfdieter%20Lang">{x = 2}. First derivative of Chebyshev S-polynomials evaluated at x = 2. See A049310. - _Wolfdieter Lang, Apr 04 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n-2) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Complement of A145397; A023533(a(n))=1; A014306(a(n))=0. - Reinhard Zumkeller, Oct 14 2008
Equals row sums of triangle A152205. - Gary W. Adamson, Nov 29 2008
a(n) is the number of gifts received from the lyricist's true love up to and including day n in the song "The Twelve Days of Christmas". a(12) = 364, almost the number of days in the year. - Bernard Hill (bernard(AT)braeburn.co.uk), Dec 05 2008
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF2 denominators of A156925. See A157703 for background information. - Johannes W. Meijer, Mar 07 2009
Starting with 1 = row sums of triangle A158823. - Gary W. Adamson, Mar 28 2009
Wiener index of the path with n edges. - Eric W. Weisstein, Apr 30 2009
This is a 'Matryoshka doll' sequence with alpha=0, the multiplicative counterpart is A000178: seq(add(add(i,i=alpha..k),k=alpha..n),n=alpha..50). - Peter Luschny, Jul 14 2009
a(n) is the number of nondecreasing triples of numbers from a set of size n, and it is the number of strictly increasing triples of numbers from a set of size n+2. - Samuel Savitz, Sep 12 2009 [Corrected and enhanced by Markus Sigg, Sep 24 2023]
a(n) is the number of ordered sequences of 4 nonnegative integers that sum to n. E.g., a(2) = 10 because 2 = 2 + 0 + 0 + 0 = 1 + 1 + 0 + 0 = 0 + 2 + 0 + 0 = 1 + 0 + 1 + 0 = 0 + 1 + 1 + 0 = 0 + 0 + 2 + 0 = 1 + 0 + 0 + 1 = 0 + 1 + 0 + 1 = 0 + 0 + 1 + 1 = 0 + 0 + 0 + 2. - Artur Jasinski, Nov 30 2009
a(n) corresponds to the total number of steps to memorize n verses by the technique described in A173964. - Ibrahima Faye (ifaye2001(AT)yahoo.fr), Feb 22 2010
The number of (n+2)-bit numbers which contain two runs of 1's in their binary expansion. - Vladimir Shevelev, Jul 30 2010
a(n) is also, starting at the second term, the number of triangles formed in n-gons by intersecting diagonals with three diagonal endpoints (see the first column of the table in Sommars link). - Alexandre Wajnberg, Aug 21 2010
Column sums of:
1 4 9 16 25...
1 4 9...
1...
..............
--------------
1 4 10 20 35...
From Johannes W. Meijer, May 20 2011: (Start)
The Ca3, Ca4, Gi3 and Gi4 triangle sums (see A180662 for their definitions) of the Connell-Pol triangle A159797 are linear sums of shifted versions of the duplicated tetrahedral numbers, e.g., Gi3(n) = 17*a(n) + 19*a(n-1) and Gi4(n) = 5*a(n) + a(n-1).
Furthermore the Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above. (End)
a(n-2)=N_0(n), n >= 1, with a(-1):=0, is the number of vertices of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p. 506. - Wolfdieter Lang, May 27 2011
We consider optimal proper vertex colorings of a graph G. Assume that the labeling, i.e., coloring starts with 1. By optimality we mean that the maximum label used is the minimum of the maximum integer label used across all possible labelings of G. Let S=Sum of the differences |l(v) - l(u)|, the sum being over all edges uv of G and l(w) is the label associated with a vertex w of G. We say G admits unique labeling if all possible labelings of G is S-invariant and yields the same integer partition of S. With an offset this sequence gives the S-values for the complete graph on n vertices, n = 2, 3, ... . - K.V.Iyer, Jul 08 2011
Central term of commutator of transverse Virasoro operators in 4-D case for relativistic quantum open strings (ref. Zwiebach). - Tom Copeland, Sep 13 2011
Appears as a coefficient of a Sturm-Liouville operator in the Ovsienko reference on page 43. - Tom Copeland, Sep 13 2011
For n > 0: a(n) is the number of triples (u,v,w) with 1 <= u <= v <= w <= n, cf. A200737. - Reinhard Zumkeller, Nov 21 2011
Regarding the second comment above by Amarnath Murthy (May 29 2003), see A181118 which gives the sequence of ordered pairs. - L. Edson Jeffery, Dec 17 2011
The dimension of the space spanned by the 3-form v[ijk] that couples to M2-brane worldsheets wrapping 3-cycles inside tori (ref. Green, Miller, Vanhove eq. 3.9). - Stephen Crowley, Jan 05 2012
a(n+1) is the number of 2 X 2 matrices with all terms in {0, 1, ..., n} and (sum of terms) = n. Also, a(n+1) is the number of 2 X 2 matrices with all terms in {0, 1, ..., n} and (sum of terms) = 3*n. - Clark Kimberling, Mar 19 2012
Using n + 4 consecutive triangular numbers t(1), t(2), ..., t(n+4), where n is the n-th term of this sequence, create a polygon by connecting points (t(1), t(2)) to (t(2), t(3)), (t(2), t(3)) to (t(3), t(4)), ..., (t(1), t(2)) to (t(n+3), t(n+4)). The area of this polygon will be one-half of each term in this sequence. - J. M. Bergot, May 05 2012
Pisano period lengths: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17,108, 19, 40, ... . (The Pisano sequence modulo m is the auxiliary sequence p(n) = a(n) mod m, n >= 1, for some m. p(n) is periodic for all sequences with rational g.f., like this one, and others. The lengths of the period of p(n) are quoted here for m>=1.) - R. J. Mathar, Aug 10 2012
a(n) is the maximum possible number of rooted triples consistent with any phylogenetic tree (level-0 phylogenetic network) containing exactly n+2 leaves. - Jesper Jansson, Sep 10 2012
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9}, which just rephrases the Pisano period length above. - Ant King, Oct 18 2012
a(n) is the number of functions f from {1, 2, 3} to {1, 2, ..., n + 4} such that f(1) + 1 < f(2) and f(2) + 1 < f(3). - Dennis P. Walsh, Nov 27 2012
a(n) is the Szeged index of the path graph with n+1 vertices; see the Diudea et al. reference, p. 155, Eq. (5.8). - Emeric Deutsch, Aug 01 2013
Also the number of permutations of length n that can be sorted by a single block transposition. - Vincent Vatter, Aug 21 2013
From J. M. Bergot, Sep 10 2013: (Start)
a(n) is the 3 X 3 matrix determinant
| C(n,1) C(n,2) C(n,3) |
| C(n+1,1) C(n+1,2) C(n+1,3) |
| C(n+2,1) C(n+2,2) C(n+2,3) |
(End)
In physics, a(n)/2 is the trace of the spin operator S_z^2 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and the sum of their squares is 10/2 = a(3)/2. - Stanislav Sykora, Nov 06 2013
a(n+1) = (n+1)*(n+2)*(n+3)/6 is also the dimension of the Hilbert space of homogeneous polynomials of degree n. - L. Edson Jeffery, Dec 12 2013
For n >= 4, a(n-3) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0111 (n-4 zeros), or, equivalently, a(n-3) is up-down coefficient {n,7} (see comment in A060351). - Vladimir Shevelev, Feb 15 2014
a(n) is one-half the area of the region created by plotting the points (n^2,(n+1)^2). A line connects points (n^2,(n+1)^2) and ((n+1)^2, (n+2)^2) and a line is drawn from (0,1) to each increasing point. From (0,1) to (4,9) the area is 2; from (0,1) to (9,16) the area is 8; further areas are 20,40,70,...,2*a(n). - J. M. Bergot, May 29 2014
Beukers and Top prove that no tetrahedral number > 1 equals a square pyramidal number A000330. - Jonathan Sondow, Jun 21 2014
a(n+1) is for n >= 1 the number of nondecreasing n-letter words over the alphabet [4] = {1, 2, 3, 4} (or any other four distinct numbers). a(2+1) = 10 from the words 11, 22, 33, 44, 12, 13, 14, 23, 24, 34; which is also the maximal number of distinct elements in a symmetric 4 X 4 matrix. Inspired by the Jul 20 2014 comment by R. J. Cano on A000582. - Wolfdieter Lang, Jul 29 2014
Degree of the q-polynomial counting the orbits of plane partitions under the action of the symmetric group S3. Orbit-counting generating function is Product_{i <= j <= k <= n} ( (1 - q^(i + j + k - 1))/(1 - q^(i + j + k - 2)) ). See q-TSPP reference. - Olivier Gérard, Feb 25 2015
Row lengths of tables A248141 and A248147. - Reinhard Zumkeller, Oct 02 2014
If n is even then a(n) = Sum_{k=1..n/2} (2k)^2. If n is odd then a(n) = Sum_{k=0..(n-1)/2} (1+2k)^2. This can be illustrated as stacking boxes inside a square pyramid on plateaus of edge lengths 2k or 2k+1, respectively. The largest k are the 2k X 2k or (2k+1) X (2k+1) base. - R. K. Guy, Feb 26 2015
Draw n lines in general position in the plane. Any three define a triangle, so in all we see C(n,3) = a(n-2) triangles (6 lines produce 4 triangles, and so on). - Terry Stickels, Jul 21 2015
a(n-2) = fallfac(n,3)/3!, n >= 3, is also the number of independent components of an antisymmetric tensor of rank 3 and dimension n. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+3 into exactly 4 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-1 into exactly 4 parts. - Juergen Will, Jan 02 2016
For n >= 2 gives the number of multiplications of two nonzero matrix elements in calculating the product of two upper n X n triangular matrices. - John M. Coffey, Jun 23 2016
Terms a(4n+1), n >= 0, are odd, all others are even. The 2-adic valuation of the subsequence of every other term, a(2n+1), n >= 0, yields the ruler sequence A007814. Sequence A275019 gives the 2-adic valuation of a(n). - M. F. Hasler, Dec 05 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 12 2017
C(n+2,3) is the number of ways to select 1 triple among n+2 objects, thus a(n) is the coefficient of x1^(n-1)*x3 in exponential Bell polynomial B_{n+2}(x1,x2,...), hence its link with A050534 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
a(n) is also the number of 3-cycles in the (n+4)-path complement graph. - Eric W. Weisstein, Apr 11 2018
a(n) is the general number of all geodetic graphs of diameter n homeomorphic to a complete graph K4. - Carlos Enrique Frasser, May 24 2018
a(n) + 4*a(n-1) + a(n-2) = n^3 = A000578(n), for n >= 0 (extending the a(n) formula given in the name). This is the Worpitzky identity for cubes. (Number of components of the decomposition of a rank 3 tensor in dimension n >= 1 into symmetric, mixed and antisymmetric parts). For a(n-2) see my Dec 10 2015 comment. - Wolfdieter Lang, Jul 16 2019
a(n) also gives the total number of regular triangles of length k (in some length unit), with k from {1, 2, ..., n}, in the matchstick arrangement with enclosing triangle of length n, but only triangles with the orientation of the enclosing triangle are counted. Row sums of unsigned A122432(n-1, k-1), for n >= 1. See the Andrew Howroyd comment in A085691. - Wolfdieter Lang, Apr 06 2020
a(n) is the number of bigrassmannian permutations on n+1 elements, i.e., permutations which have a unique left descent, and a unique right descent. - Rafael Mrden, Aug 21 2020
a(n-2) is the number of chiral pairs of colorings of the edges or vertices of a triangle using n or fewer colors. - Robert A. Russell, Oct 20 2020
a(n-2) is the number of subsets of {1,2,...,n} whose diameters are their size. For example, for n=4, a(2)=4 and the sets are {1,3}, {2,4}, {1,2,4}, {1,3,4}. - Enrique Navarrete, Dec 26 2020
For n>1, a(n-2) is the number of subsets of {1,2,...,n} in which the second largest element is the size of the subset. For example, for n=4, a(2)=4 and the sets are {2,3}, {2,4}, {1,3,4}, {2,3,4}. - Enrique Navarrete, Jan 02 2021
a(n) is the number of binary strings of length n+2 with exactly three 0's. - Enrique Navarrete, Jan 15 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zero, this sequence is the fourth diagonal of the Pascal matrix A007318 and the only nonvanishing diagonal (fourth) of the matrix representation IM = (A132440)^3/3! of the differential operator D^3/3!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the lower triangular matrix of coefficients of the Appell polynomial sequence p_n(x) = e^{D^3/3!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^3/3!}, which is that for A025035 aerated with double zeros, the first column of M.
See A099174 and A000332 for analogous relationships for the third and fifth diagonals of the Pascal matrix. (End)
a(n) is the number of circles with a radius of integer length >= 1 and center at a grid point in an n X n grid. - Albert Swafford, Jun 11 2021
Maximum Wiener index over all connected graphs with n+1 vertices. - Allan Bickle, Jul 09 2022
The third Euler row (1,4,1) has an additional connection with the tetrahedral numbers besides the n^3 identity stated above: a^2(n) + 4*a^2(n+1) + a^2(n+2) = a(n^2+4n+4), which can be shown with algebra. E.g., a^2(2) + 4*a^2(3) + a^2(4) = 16 + 400 + 400 = a(16). Although an analogous thing happens with the (1,1) row of Euler's triangle and triangular numbers C(n+1,2) = A000217(n) = T(n), namely both T(n-1) + T(n) = n^2 and T^2(n-1) + T^2(n) = T(n^2) are true, only one (the usual identity) still holds for the Euler row (1,11,11,1) and the C(n,4) numbers in A000332. That is, the dot product of (1,11,11,1) with the squares of 4 consecutive terms of A000332 is not generally a term of A000332. - Richard Peterson, Aug 21 2022
For n > 1, a(n-2) is the number of solutions of the Diophantine equation x1 + x2 + x3 + x4 + x5 = n, subject to the constraints 0 <= x1, 1 <= x2, 2 <= x3, 0 <= x4 <= 1, 0 <= x5 and x5 is even. - Daniel Checa, Nov 03 2022
a(n+1) is also the number of vertices of the generalized Pitman-Stanley polytope with parameters 2, n, and vector (1,1, ... ,1), which is integrally equivalent to a flow polytope over the grid graph having 2 rows and n columns. - William T. Dugan, Sep 18 2023
a(n) is the number of binary words of length (n+1) containing exactly one substring 01. a(2) = 4: 001, 010, 011, 101. - Nordine Fahssi, Dec 09 2024
a(n) is the number of directed bishop moves on an n X n chessboard, identified under rotations (0, 90, 180 and 270 degree) and all reflections. - Hilko Koning, Aug 27 2025

Examples

			a(2) = 3*4*5/6 = 10, the number of balls in a pyramid of 3 layers of balls, 6 in a triangle at the bottom, 3 in the middle layer and 1 on top.
Consider the square array
  1  2  3  4  5  6 ...
  2  4  6  8 10 12 ...
  3  6  9 12 16 20 ...
  4  8 12 16 20 24 ...
  5 10 15 20 25 30 ...
  ...
then a(n) = sum of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
G.f. = x + 4*x^2 + 10*x^3 + 20*x^4 + 35*x^5 + 56*x^6 + 84*x^7 + 120*x^8 + 165*x^9 + ...
Example for a(3+1) = 20 nondecreasing 3-letter words over {1,2,3,4}: 111, 222, 333; 444, 112, 113, 114, 223, 224, 122, 224, 133, 233, 144, 244, 344; 123, 124, 134, 234.  4 + 4*3 + 4 = 20. - _Wolfdieter Lang_, Jul 29 2014
Example for a(4-2) = 4 independent components of a rank 3 antisymmetric tensor A of dimension 4: A(1,2,3), A(1,2,4), A(1,3,4) and A(2,3,4). - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_0.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 44, 70.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 4.
  • M. V. Diudea, I. Gutman, and J. Lorentz, Molecular Topology, Nova Science, 2001, Huntington, N.Y. pp. 152-156.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, pp. 292-293.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics (no. 165), Cambridge Univ. Press, 2005.
  • Kenneth A Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Szenes, The combinatorics of the Verlinde formulas (N.J. Hitchin et al., ed.), in Vector bundles in algebraic geometry, Cambridge, 1995.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 11-13.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 126-127.
  • B. Zwiebach, A First Course in String Theory, Cambridge, 2004; see p. 226.

Crossrefs

Bisections give A000447 and A002492.
Sums of 2 consecutive terms give A000330.
a(3n-3) = A006566(n). A000447(n) = a(2n-2). A002492(n) = a(2n+1).
Column 0 of triangle A094415.
Partial sums are A000332. - Jonathan Vos Post, Mar 27 2011
Cf. A216499 (the analogous sequence for level-1 phylogenetic networks).
Cf. A068980 (partitions), A231303 (spin physics).
Cf. similar sequences listed in A237616.
Cf. A104712 (second column, if offset is 2).
Cf. A145397 (non-tetrahedral numbers). - Daniel Forgues, Apr 11 2015
Cf. A127324.
Cf. A007814, A275019 (2-adic valuation).
Cf. A000578 (cubes), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A002817 (4-cycle count of \bar P_{n+4}), A060446 (5-cycle count of \bar P_{n+3}), A302695 (6-cycle count of \bar P_{n+5})
Row 2 of A325000 (simplex facets and vertices) and A327084 (simplex edges and ridges).
Cf. A085691 (matchsticks), A122432 (unsigned row sums).
Cf. (triangle colorings) A006527 (oriented), A000290 (achiral), A327085 (chiral simplex edges and ridges).
Row 3 of A321791 (cycles of n colors using k or fewer colors).
The Wiener indices of powers of paths for k = 1..6 are given in A000292, A002623, A014125, A122046, A122047, and A175724, respectively.

Programs

  • GAP
    a:=n->Binomial(n+2,3);; A000292:=List([0..50],n->a(n)); # Muniru A Asiru, Feb 28 2018
    
  • Haskell
    a000292 n = n * (n + 1) * (n + 2) `div` 6
    a000292_list = scanl1 (+) a000217_list
    -- Reinhard Zumkeller, Jun 16 2013, Feb 09 2012, Nov 21 2011
    
  • Magma
    [n*(n+1)*(n+2)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 03 2014
    
  • Maple
    a:=n->n*(n+1)*(n+2)/6; seq(a(n), n=0..50);
    A000292 := n->binomial(n+2,3); seq(A000292(n), n=0..50);
    isA000292 := proc(n)
        option remember;
        local a,i ;
        for i from iroot(6*n,3)-1 do
            a := A000292(i) ;
            if a > n then
                return false;
            elif a = n then
                return true;
            end if;
        end do:
    end proc: # R. J. Mathar, Aug 14 2024
  • Mathematica
    Table[Binomial[n + 2, 3], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
    Accumulate[Accumulate[Range[0, 50]]] (* Harvey P. Dale, Dec 10 2011 *)
    Table[n (n + 1)(n + 2)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
    Nest[Accumulate, Range[0, 50], 2] (* Harvey P. Dale, May 24 2017 *)
    Binomial[Range[20] + 1, 3] (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 4, 10}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[x/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Table[Range[n].Range[n,1,-1],{n,0,50}] (* Harvey P. Dale, Mar 02 2024 *)
  • Maxima
    A000292(n):=n*(n+1)*(n+2)/6$ makelist(A000292(n),n,0,60); /* Martin Ettl, Oct 24 2012 */
    
  • PARI
    a(n) = (n) * (n+1) * (n+2) / 6  \\ corrected by Harry J. Smith, Dec 22 2008
    
  • PARI
    a=vector(10000);a[2]=1;for(i=3,#a,a[i]=a[i-2]+i*i); \\ Stanislav Sykora, Nov 07 2013
    
  • PARI
    is(n)=my(k=sqrtnint(6*n,3)); k*(k+1)*(k+2)==6*n \\ Charles R Greathouse IV, Dec 13 2016
    
  • Python
    # Compare A000217.
    def A000292():
        x, y, z = 1, 1, 1
        yield 0
        while True:
            yield x
            x, y, z = x + y + z + 1, y + z + 1, z + 1
    a = A000292(); print([next(a) for i in range(45)]) # Peter Luschny, Aug 03 2019

Formula

a(n) = C(n+2,3) = n*(n+1)*(n+2)/6 (see the name).
G.f.: x / (1 - x)^4.
a(n) = -a(-4 - n) for all in Z.
a(n) = Sum_{k=0..n} A000217(k) = Sum_{k=1..n} Sum_{j=0..k} j, partial sums of the triangular numbers.
a(2n)= A002492(n). a(2n+1)=A000447(n+1).
a(n) = Sum_{1 <= i <= j <= n} |i - j|. - Amarnath Murthy, Aug 05 2002
a(n) = (n+3)*a(n-1)/n. - Ralf Stephan, Apr 26 2003
Sums of three consecutive terms give A006003. - Ralf Stephan, Apr 26 2003
Determinant of the n X n symmetric Pascal matrix M_(i, j) = C(i+j+2, i). - Benoit Cloitre, Aug 19 2003
The sum of a series constructed by the products of the index and the length of the series (n) minus the index (i): a(n) = sum[i(n-i)]. - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005
a(n) = Sum_{k=0..floor((n-1)/2)} (n-2k)^2 [offset 0]; a(n+1) = Sum_{k=0..n} k^2*(1-(-1)^(n+k-1))/2 [offset 0]. - Paul Barry, Apr 16 2005
a(n) = -A108299(n+5, 6) = A108299(n+6, 7). - Reinhard Zumkeller, Jun 01 2005
a(n) = -A110555(n+4, 3). - Reinhard Zumkeller, Jul 27 2005
Values of the Verlinde formula for SL_2, with g = 2: a(n) = Sum_{j=1..n-1} n/(2*sin^2(j*Pi/n)). - Simone Severini, Sep 25 2006
a(n-1) = (1/(1!*2!))*Sum_{1 <= x_1, x_2 <= n} |det V(x_1, x_2)| = (1/2)*Sum_{1 <= i,j <= n} |i-j|, where V(x_1, x_2) is the Vandermonde matrix of order 2. Column 2 of A133112. - Peter Bala, Sep 13 2007
Starting with 1 = binomial transform of [1, 3, 3, 1, ...]; e.g., a(4) = 20 = (1, 3, 3, 1) dot (1, 3, 3, 1) = (1 + 9 + 9 + 1). - Gary W. Adamson, Nov 04 2007
a(n) = A006503(n) - A002378(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Jaume Oliver Lafont, Nov 18 2008
Sum_{n>=1} 1/a(n) = 3/2, case x = 1 in Gradstein-Ryshik 1.513.7. - R. J. Mathar, Jan 27 2009
E.g.f.:((x^3)/6 + x^2 + x)*exp(x). - Geoffrey Critzer, Feb 21 2009
Limit_{n -> oo} A171973(n)/a(n) = sqrt(2)/2. - Reinhard Zumkeller, Jan 20 2010
With offset 1, a(n) = (1/6)*floor(n^5/(n^2 + 1)). - Gary Detlefs, Feb 14 2010
a(n) = Sum_{k = 1..n} k*(n-k+1). - Vladimir Shevelev, Jul 30 2010
a(n) = (3*n^2 + 6*n + 2)/(6*(h(n+2) - h(n-1))), n > 0, where h(n) is the n-th harmonic number. - Gary Detlefs, Jul 01 2011
a(n) = coefficient of x^2 in the Maclaurin expansion of 1 + 1/(x+1) + 1/(x+1)^2 + 1/(x+1)^3 + ... + 1/(x+1)^n. - Francesco Daddi, Aug 02 2011
a(n) = coefficient of x^4 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
a(n) = 2*A002415(n+1)/(n+1). - Tom Copeland, Sep 13 2011
a(n) = A004006(n) - n - 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = (A007531(n) + A027480(n) + A007290(n))/11. - J. M. Bergot, May 28 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1. - Ant King, Oct 18 2012
G.f.: x*U(0) where U(k) = 1 + 2*x*(k+2)/( 2*k+1 - x*(2*k+1)*(2*k+5)/(x*(2*k+5)+(2*k+2)/U(k+1) )); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n^2 - 1) = (1/2)*(a(n^2 - n - 2) + a(n^2 + n - 2)) and
a(n^2 + n - 2) - a(n^2 - 1) = a(n-1)*(3*n^2 - 2) = 10*A024166(n-1), by Berselli's formula in A222716. - Jonathan Sondow, Mar 04 2013
G.f.: x + 4*x^2/(Q(0)-4*x) where Q(k) = 1 + k*(x+1) + 4*x - x*(k+1)*(k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n+1) = det(C(i+3,j+2), 1 <= i,j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n) = a(n-2) + n^2, for n > 1. - Ivan N. Ianakiev, Apr 16 2013
a(2n) = 4*(a(n-1) + a(n)), for n > 0. - Ivan N. Ianakiev, Apr 26 2013
G.f.: x*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = n + 2*a(n-1) - a(n-2), with a(0) = a(-1) = 0. - Richard R. Forberg, Jul 11 2013
a(n)*(m+1)^3 + a(m)*(n+1) = a(n*m + n + m), for any nonnegative integers m and n. This is a 3D analog of Euler's theorem about triangular numbers, namely t(n)*(2m+1)^2 + t(m) = t(2nm + n + m), where t(n) is the n-th triangular number. - Ivan N. Ianakiev, Aug 20 2013
Sum_{n>=0} a(n)/(n+1)! = 2*e/3 = 1.8121878856393... . Sum_{n>=1} a(n)/n! = 13*e/6 = 5.88961062832... . - Richard R. Forberg, Dec 25 2013
a(n+1) = A023855(n+1) + A023856(n). - Wesley Ivan Hurt, Sep 24 2013
a(n) = A024916(n) + A076664(n), n >= 1. - Omar E. Pol, Feb 11 2014
a(n) = A212560(n) - A059722(n). - J. M. Bergot, Mar 08 2014
Sum_{n>=1} (-1)^(n + 1)/a(n) = 12*log(2) - 15/2 = 0.8177661667... See A242024, A242023. - Richard R. Forberg, Aug 11 2014
3/(Sum_{n>=m} 1/a(n)) = A002378(m), for m > 0. - Richard R. Forberg, Aug 12 2014
a(n) = Sum_{i=1..n} Sum_{j=i..n} min(i,j). - Enrique Pérez Herrero, Dec 03 2014
Arithmetic mean of Square pyramidal number and Triangular number: a(n) = (A000330(n) + A000217(n))/2. - Luciano Ancora, Mar 14 2015
a(k*n) = a(k)*a(n) + 4*a(k-1)*a(n-1) + a(k-2)*a(n-2). - Robert Israel, Apr 20 2015
Dirichlet g.f.: (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1))/6. - Ilya Gutkovskiy, Jul 01 2016
a(n) = A080851(1,n-1) - R. J. Mathar, Jul 28 2016
a(n) = (A000578(n+1) - (n+1) ) / 6. - Zhandos Mambetaliyev, Nov 24 2016
G.f.: x/(1 - x)^4 = (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...), where r(x) = (1 + x)^4 = (1 + 4x + 6x^2 + 4x^3 + x^4); and x/(1 - x)^4 = (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1 + x + x^2)^4. - Gary W. Adamson, Jan 23 2017
a(n) = A000332(n+3) - A000332(n+2). - Bruce J. Nicholson, Apr 08 2017
a(n) = A001296(n) - A050534(n+1). - Cyril Damamme, Feb 26 2018
a(n) = Sum_{k=1..n} (-1)^(n-k)*A122432(n-1, k-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Apr 06 2020
From Robert A. Russell, Oct 20 2020: (Start)
a(n) = A006527(n) - a(n-2) = (A006527(n) + A000290(n)) / 2 = a(n-2) + A000290(n).
a(n-2) = A006527(n) - a(n) = (A006527(n) - A000290(n)) / 2 = a(n) - A000290(n).
a(n) = 1*C(n,1) + 2*C(n,2) + 1*C(n,3), where the coefficient of C(n,k) is the number of unoriented triangle colorings using exactly k colors.
a(n-2) = 1*C(n,3), where the coefficient of C(n,k) is the number of chiral pairs of triangle colorings using exactly k colors.
a(n-2) = A327085(2,n). (End)
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(sqrt(2)*Pi)/(3*sqrt(2)*Pi).
Product_{n>=2} (1 - 1/a(n)) = sqrt(2)*sinh(sqrt(2)*Pi)/(33*Pi). (End)
a(n) = A002623(n-1) + A002623(n-2), for n>1. - Ivan N. Ianakiev, Nov 14 2021

Extensions

Corrected and edited by Daniel Forgues, May 14 2010

A002623 Expansion of 1/((1-x)^4*(1+x)).

Original entry on oeis.org

1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0

Views

Author

Keywords

Comments

Also a(n) is the number of nondegenerate triangles that can be made from rods of lengths 1 to n+1. - Alfred Bruckstein; corrected by Hans Rudolf Widmer, Nov 02 2023
Also number of circumscribable (or escrible) quadrilaterals that can be made from rods of length 1,2,3,4,...,n. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
Also number of 2 X n binary matrices up to row and column permutation (see the link: Binary matrices up to row and column permutations). - Vladeta Jovovic
Also partial sum of alternate triangular numbers (1, 3, 1+6, 3+10, 1+6+15, 3+10+21, etc.); and also number of triangles pointing in opposite direction to largest triangle in triangular matchstick arrangement of side n+2 (cf. A002717, also the Larsen article). - Henry Bottomley, Aug 08 2000
Ordered union of A002412(n+1) and A016061(n+1). - Lekraj Beedassy, Oct 13 2003
Also Molien series for certain 4-D representation of cyclic group of order 2. - N. J. A. Sloane, Jun 12 2004
From Radu Grigore (radugrigore(AT)gmail.com), Jun 19 2004: (Start)
a(n) = floor( (n+2)*(n+4)*(2n+3) / 24 ). E.g., a(2) = floor(4*6*7/24) = 7 because there are 7 upside down triangles (6 of size one and 1 of size two) in the matchstick figure:
/\
/\/\
/\/\/\
/\/\/\/\
(End)
Number of non-congruent non-parallelogram trapezoids with positive integer sides (trapezints) and perimeter 2n+5. Also with perimeter 2n+8. - Michael Somos, May 12 2005
a(n) = A108561(n+4,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
Also number of nonisomorphic planes with n points and 2 lines. E.g., a(0)=1 because with no points, we just have two empty lines. a(1)=3 because the one point may belong to 0, 1 or 2 lines. a(2)=7 because there are 7 ways to determine which of 2 points belong to which of 2 lines, up to isomorphism, i.e., up to a bijection f on the sets of points and a bijection g on the sets of lines, such that A belongs to a iff f(A) belongs to g(a). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
a(n-2) is the number of ways to pick two non-overlapping subwords of equal nonzero length from a word of length n. E.g., a(5-2)=a(3)=13 since the word 12345 of length 5 has the following subword pairs: 1,2; 1,3; 1,4; 1,5; 2,3; 2,4; 2,5; 3,4; 3,5; 4,5; 12,34; 12,45; 23,45. - Michael Somos, Oct 22 2006
Partial sums of A002620. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
From Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007: (Start)
Also number of squares of any size in a staircase of n steps built with unit squares:
||__
||__|
||__||
For a staircase of 3 steps 6 squares of size 1 and 1 square of size 2, hence c(3)=7.
Columns sums of:
1 3 6 10 15 21 28 ...
1 3 6 10 15 ...
1 3 6 ...
1 ...
---------------------
1 3 7 13 22 34 50 ...
(End)
a(n) = sum of row n+1 of triangle A134446. Also, binomial transform of [1, 2, 2, 0, 1, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
Let b(n) be the number of 4-tuples (w,x,y,z) having all terms in {1,...,n} and 2w=x+y+z+n; then b(n+3) = a(n) for n >= 0. - Clark Kimberling, May 08 2012
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w >= x+y and x <= y. - Clark Kimberling, Jun 04 2012
Also, number of unlabeled bipartite graphs with two left vertices and n right vertices. - Yavuz Oruc, Jan 14 2018
Also number of triples (x,y,z) with 0 < x <= y <= z <= n + 1, x + y > z. - Ralf Steiner, Feb 06 2020
Bisections A002412 and A016061: a(2*k) = k*(k+1)*(4*k-1)/3! and a(2*k+1) = (k+1)*(k+2)*(4*k+9)/3!, for k >= 0. See the Woolhouse link, II. Solution by Stephen Watson, p. 65, with index shifts. - Mo Li, Apr 02 2020
Also, Wiener index of the square of the path graph P_(n+2). - Allan Bickle, Aug 01 2020
Maximum Wiener index of all maximal 2-degenerate graphs with n+2 vertices. (A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices.) The extremal graphs are squares of paths, so the bound also applies to 2-trees and maximal outerplanar graphs. - Allan Bickle, Sep 15 2022

Examples

			G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
  • H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002620 (first differences), A000292, A001752 (partial sums), A062109 (binomial transf.).
Bisections A002412, A016061.
Cf. also A002717 (a companion sequence), A002727, A006148, A057524, A134446, A014125, A122046, A122047.
The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623 (this sequence), A014125, A122046, A122047, A175724, respectively.

Programs

  • Maple
    A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2;
    seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis
    a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48:
    seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
  • Mathematica
    CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *)
    Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *)
    a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
  • PARI
    {a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
    
  • PARI
    x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
    
  • Python
    def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024

Formula

a(n+1) = a(n) + {(k-1)*k if n=2*k} or {k*k if n=2*k+1}.
a(n)+a(n+1) = A000292(n+1).
a(n) = a(n-2) + A000217(n+1) = A002717(n+2) - A000292(n+1).
Also: a(n) = C(n+3, 3) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+3,3).
The signed version 1, -3, 7, ... has the formula:
a(n) = (4*n^3 + 30*n^2 + 68*n + 45)*(-1)^n/48 + 1/16.
This is the partial sums of the signed version of A000292. (End)
From Paul Barry, Jul 21 2003: (Start)
a(n) = Sum_{k=0..n} floor((k+2)^2/4).
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (1+(-1)^i)/2. (End)
a(n) = a(n - 2) + (n*(n - 1))/2, with n>2, a(1)=0, a(2)=1; a(n) = (4*n^3+6*n^2-4*n+3*(-1)^n-3)/48, with offset 2. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004 (formula simplified by Bruno Berselli, Aug 29 2013)
a(n) = ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4, with offset 1. - Jerry W. Lewis (JLewis(AT)wyeth.com), Mar 23 2005
a(n) = 2*a(n-1) - a(n-2) + 1 + floor(n/2). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
A002620(n+3) = a(n+1) - a(n). - Michael Somos, Sep 04 1999
Euler transform of length 2 sequence [ 3, 1]. - Michael Somos, Sep 04 2006
a(n) = -a(-5-n) for all n in Z. - Michael Somos, Sep 04 2006
Let P(i,k) be the number of integer partitions of n into k parts, then with k=2 we have a(n) = sum_{m=1}^{n} sum_{i=k}^{m} P(i,k). For k=1 we get A000217 = triangular numbers. - Thomas Wieder, Feb 18 2007
a(n) = (n+(3+(-1)^n)/2)*(n+(7+(-1)^n)/2)*(2*n+5-2*(-1)^n)/24. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007 (corrected by Bruno Berselli, Aug 30 2013)
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A006918(n+1) + A006918(n).
a(n) = A058187(n-2) + 2*A058187(n-1) + A058187(n). (End)
a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22; for n > 4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Harvey P. Dale, Jul 19 2011
a(n) = Sum_{i=0..n+2} floor(i/2)*ceiling(i/2). - Bruno Berselli, Aug 30 2013
a(n) = 15/16 + (1/16)*(-1)^n + (17/12)*n + (5/8)*n^2 + (1/12)*n^3. - Robert Israel, Jul 07 2014
a(n) = Sum_{i=0..n+2} (n+1-i)*floor(i/2+1). - Bruno Berselli, Apr 04 2017
a(n) = 1 + floor((2*n^3 + 15*n^2 + 34*n) / 24). - Allan Bickle, Aug 01 2020
E.g.f.: ((24 + 51*x + 21*x^2 + 2*x^3)*cosh(x) + (21 + 51*x + 21*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021

A014125 Bisection of A001400.

Original entry on oeis.org

1, 3, 6, 11, 18, 27, 39, 54, 72, 94, 120, 150, 185, 225, 270, 321, 378, 441, 511, 588, 672, 764, 864, 972, 1089, 1215, 1350, 1495, 1650, 1815, 1991, 2178, 2376, 2586, 2808, 3042, 3289, 3549, 3822, 4109, 4410, 4725, 5055, 5400, 5760, 6136, 6528, 6936, 7361, 7803
Offset: 0

Views

Author

Keywords

Comments

Also Schoenheim bound L_1(n,5,4).
Degrees of polynomials defined by p(n) = (x^(n+1)*p(n-1)p(n-3) + p(n-2)^2)/p(n-4), p(-4)=p(-3)=p(-2)=p(-1)=1. - Michael Somos, Jul 21 2004
Degrees of polynomial tau-functions of q-discrete Painlevé I, which generate sequence A095708 when q=2 (up to an offset of 3). - Andrew Hone, Jul 29 2004
Because of the Laurent phenomenon for the general q-discrete Painlevé I tau-function recurrence p(n) = (a*x^(n+1)*p(n-1)*p(n-3) + b*p(n-2)^2)/p(n-4), p(n) for n > -1 will always be a polynomial in x and a Laurent polynomial in a,b and the initial data p(-4),p(-3),p(-2),p(-1). - Andrew Hone, Jul 29 2004
Create the sequence 0,0,0,0,0,6,18,36,66,108,... so that the sum of three consecutive terms b(n) + b(n+1) + b(n+2) = A007531(n), with b(0)=0; then a(n) = b(n+5)/6. - J. M. Bergot, Jul 30 2013
Number of partitions of n into three kinds of part 1 and one kind of part 3. - Joerg Arndt, Sep 28 2015
First differences are A001840(k) starting with k=2; second differences are A086161(k) starting with k=1. - Bob Selcoe, Sep 28 2015
Maximum Wiener index of all maximal planar graphs with n+2 vertices. The extremal graphs are cubes of paths. - Allan Bickle, Jul 09 2022
Maximum Wiener index of all maximal 3-degenerate graphs with n+2 vertices. (A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices.) The extremal graphs are cubes of paths, so the bound also applies to 3-trees. - Allan Bickle, Sep 18 2022

Examples

			Polynomials: p(0)=x+1, p(1)=x^3+x^2+1, p(2)=x^6+x^5+x^3+x^2+2x+1, ...
a(12)=185:  A000217(13)=91 + a(9)=94 == 91+55+28+10+1 = 185. - _Bob Selcoe_, Sep 27 2015
a(3)=11: the 11 partitions of 3 are {1a,1a,1a}, {1a,1a,1b}, {1a,1a,1c}, {1a,1b,1b}, {1a,1b,1c}, {1a,1c,1c}, {1b,1b,1b}, {1b,1b,1c}, {1b,1c,1c}, {1c,1c,1c}, {3}. - _Bob Selcoe_, Oct 04 2015
		

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • L. Smiley, Hidden Hexagons (preprint).

Crossrefs

A column of A036838.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, A175724.

Programs

  • Magma
    [n^3/18+n^2/2+4*n/3+1+(((n+1) mod 3)-1)/9 : n in [0..50]]; // Wesley Ivan Hurt, Apr 14 2015
    
  • Magma
    I:=[1,3,6,11,18,27]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Apr 15 2015
    
  • Maple
    L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,n-3,n-4,1).
  • Mathematica
    CoefficientList[Series[1/((1 - x)^3*(1 - x^3)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 14 2015 *)
  • PARI
    a(n)=if(n<-5,-a(-6-n),polcoeff(1/(1-x)^3/(1-x^3)+x^n*O(x),n)) /* Michael Somos, Jul 21 2004 */
    
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x)^3*(1-x^3))) \\ Altug Alkan, Oct 16 2015
    
  • PARI
    a(n)=(n^3 + 9*n^2 + 24*n + 19)\/18 \\ Charles R Greathouse IV, Jun 29 2020
    
  • Sage
    [(binomial(n+4,3) - ((n+4)//3))/3 for n in (0..50)] # G. C. Greubel, Apr 28 2019

Formula

G.f.: 1/((1-x)^3*(1-x^3)).
a(n) = -a(-6-n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6).
The simplest recurrence is fourth order: a(n) = a(n-1) + a(n-3) - a(n-4) + n + 1, which gives the g.f.: 1/((1-x)^3*(1-x^3)), with a(-4) = a(-3) = a(-2) = a(-1) = 0.
a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + 2/(9*sqrt(3))*sin(2*Pi*n/3). - Andrew Hone, Jul 29 2004
a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + (((n+1) mod 3) - 1)/9. - same formula, simplified by Gerald Hillier, Apr 14 2015
a(n) = (2*A000027(n+1) + 3*A000292(n+1) + A049347(n-1) + 1 + 3*A000217(n+1))/9. - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A144677(n) + A144677(n-1) + A144677(n-2).
a(n) = A190717(n-4) + 2*A190717(n-3) + 3*A190717(n-2) + 2*A190717(n-1) + A190717(n). (End)
3*a(n) = binomial(n+4,3) - floor((n+4)/3). - Bruno Berselli, Nov 08 2013
a(n) = A000217(n+1) + a(n-3) = Sum_{j>=0, n>=3*j} (n-3*j+1)*(n-3*j+2)/2. - Bob Selcoe, Sep 27 2015
a(n) = round(((2*n+5)^3 + 3*(2*n+5)^2 - 9*(2*n+5))/144). - Giacomo Guglieri, Jun 28 2020
a(n) = floor(((n+2)^3 + 3*(n+2)^2)/18). - Allan Bickle, Aug 01 2020
a(n) = Sum_{j=0..n} (n-j+1)*floor((j+3)/3). - G. C. Greubel, Oct 18 2021
E.g.f.: exp(x) + exp(x)*x*(34 + 12*x + x^2)/18 + 2*exp(-x/2)*sin(sqrt(3)*x/2)/(9*sqrt(3)). - Stefano Spezia, Apr 05 2023

Extensions

More terms from James Sellers, Dec 24 1999

A122046 Partial sums of floor(n^2/8).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 16, 24, 34, 46, 61, 79, 100, 124, 152, 184, 220, 260, 305, 355, 410, 470, 536, 608, 686, 770, 861, 959, 1064, 1176, 1296, 1424, 1560, 1704, 1857, 2019, 2190, 2370, 2560, 2760, 2970, 3190, 3421, 3663, 3916, 4180, 4456, 4744, 5044, 5356, 5681, 6019, 6370
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Degree of the polynomial P(n+1,x), defined by P(n,x) = [x^(n-1)*P(n-1,x)*P(n-4,x)+P(n-2,x)*P(n-3,x)]/P(n-5,x) with P(1,x)=P(0,x)=P(-1,x)=P(-2,x)=P(-3,x)=1.
Define the sequence b(n) = 1, 4, 10, 20, 36, 60,... for n>=0 with g.f. 1/((1+x)*(1+x^2)*(1-x)^5). Then a(n+3) = b(n)-b(n-1) and b(n)+b(n+1)+b(n+2)+b(n+3) = A052762(n+7)/24. - J. M. Bergot, Aug 21 2013
Maximum Wiener index of all maximal 4-degenerate graphs with n-1 vertices. (A maximal 4-degenerate graph can be constructed from a 4-clique by iteratively adding a new 4-leaf (vertex of degree 4) adjacent to four existing vertices.) The extremal graphs are 4th powers of paths, so the bound also applies to 4-trees. - Allan Bickle, Sep 15 2022

Examples

			a(6) = 10 = 0 + 0 + 0 + 1 + 2 + 3 + 4.
		

Crossrefs

Partial sums of A001972.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046 (this sequence), A122047, A175724.

Programs

  • Magma
    [Round((2*n^3+3*n^2-8*n)/48): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A122046 := proc(n) round((2*n^3+3*n^2-8*n)/48) ; end proc: # Mircea Merca
  • Mathematica
    p[n_] := p[n] = Cancel[Simplify[ (x^(n - 1)p[n - 1]p[n - 4] + p[n - 2]*p[n - 3])/p[n - 5]]]; p[ -5] = 1;p[ -4] = 1;p[ -3] = 1;p[ -2] = 1;p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]
    Accumulate[Floor[Range[0,60]^2/8]] (* or *) LinearRecurrence[{3,-3,1,1,-3,3,-1},{0,0,0,1,3,6,10},60] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    a(n)=(2*n^3+3*n^2-8*n+3)\48 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = Sum_{k=0..n} floor(k^2/8).
a(n) = round((2*n^3 + 3*n^2 - 8*n)/48) = round((4*n^3 + 6*n^2 - 16*n - 9)/96) = floor((2*n^3 + 3*n^2 - 8*n + 3)/48) = ceiling((2*n^3 + 3*n^2 - 8*n - 12)/48). - Mircea Merca
a(n) = a(n-8) + (n-4)^2 + n, n > 8. - Mircea Merca
From Andrew Hone, Jul 15 2008: (Start)
a(n+1) = cos((2*n+1)*Pi/4)/(4*sqrt(2)) + (2*n+3)*(2*n^2 + 6*n - 5)/96 + (-1)^n/32.
a(n+1) = A057077(n+1)/8 + A090294(n-1)/32 + (-1)^n/32.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7). (End)
O.g.f.: x^3 / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Jul 15 2008
From Johannes W. Meijer, May 20 2011: (Start)
a(n+3) = A144678(n) + A144678(n-1) + A144678(n-2) + A144678(n-3);
a(n+3) = Sum_{k=0..6} min(6-k+1,k+1)* A190718(n+k-6). (End)
a(n) = (4*n^3 + 6*n^2 - 16*n - 9 - 3*(-1)^n + 12*(-1)^((2*n - 1 + (-1)^n)/4))/96. - Luce ETIENNE, Mar 21 2014
E.g.f.: ((2*x^3 + 9*x^2 - 3*x - 6)*cosh(x) + 6*(cos(x) + sin(x)) + (2*x^3 + 9*x^2 - 3*x - 3)*sinh(x))/48. - Stefano Spezia, Apr 05 2023

Extensions

Edited by N. J. A. Sloane, Sep 17 2006, Jul 11 2008, Jul 12 2008
More formulas and better name from Mircea Merca, Nov 19 2010

A175724 Partial sums of floor(n^2/12).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 39, 51, 65, 81, 99, 120, 144, 171, 201, 234, 270, 310, 354, 402, 454, 510, 570, 635, 705, 780, 860, 945, 1035, 1131, 1233, 1341, 1455, 1575, 1701, 1834, 1974, 2121, 2275, 2436, 2604, 2780, 2964, 3156, 3356
Offset: 0

Views

Author

Mircea Merca, Aug 18 2010

Keywords

Comments

Partial sums of A008724.
Maximum Wiener index of all maximal 6-degenerate graphs with n-2 vertices. (A maximal 6-degenerate graph can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to 6 existing vertices.) The extremal graphs are 6th powers of paths, so the bound also applies to 6-trees. - Allan Bickle, Sep 18 2022

Crossrefs

Cf. A008724.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, (this sequence).

Programs

  • Magma
    [ &+[ Floor(j^2/12): j in [0..n] ]: n in [0..60] ];
    
  • Maple
    A175724 := proc(n) add( floor(i^2/12) ,i=0..n) ; end proc:
  • Mathematica
    Accumulate[Floor[Range[0, 49]^2/12]]
  • PARI
    vector(61, n, round((2*(n-1)^3 +3*(n-1)^2 -18*(n-1))/72) ) \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    [round((2*n^3 +3*n^2 -18*n)/72) for n in (0..60)] # G. C. Greubel, Dec 05 2019

Formula

a(n) = round((2*n^3 + 3*n^2 - 18*n)/72).
a(n) = a(n-6) + (n-2)*(n-3)/2, n>5.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9), n>8.
G.f.: x^4/((x+1)*(x^2+x+1)*(x^2-x+1)*(x-1)^4).
An explicit formula appears in the Bickle/Che paper.

A144679 a(n) = [n/5 + 1]*[n/5 + 2]*(3*n - 10*[n/5] + 3)/6, where [.] = floor.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 196, 217, 238, 259, 280, 308, 336, 364, 392, 420, 456, 492, 528, 564, 600, 645, 690, 735, 780, 825, 880, 935, 990, 1045, 1100, 1166, 1232, 1298, 1364, 1430, 1508, 1586, 1664
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2009

Keywords

Comments

Related to enumeration of quantum states: this is S_c defined in eq.(10b) of the O'Sullivan and Busch reference, with lambda = 5.
This coincides with the formula for an upper bound on the minimum number of monochromatic triangles in the complete graph K_{n+11} with 3-colored edges given by Cummings et al. (2013) in Corollary 3. (The paper claims that this bound is sharp only for all sufficiently large n.) - M. F. Hasler, Jun 25 2021

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^5))^2 )); // G. C. Greubel, Oct 18 2021
    
  • Maple
    n:=80; lambda:=5; S10b:=[];
    for ii from 0 to n do
    x:=floor(ii/lambda);
    snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
    S10b:=[op(S10b),snc];
    od:
    S10b;
    A144679 := proc(n) option remember; local k; sum(THN5(n-k),k=0..4) end: THN5:= proc(n) option remember; THN5(n):= binomial(floor(n/5)+3,3) end: seq(A144679(n), n=0..57); # Johannes W. Meijer, May 20 2011
  • Mathematica
    LinearRecurrence[{2,-1,0,0,2,-4,2,0,0,-1,2,-1}, {1,2,3,4,5,8,11,14,17,20,26,32}, 60] (* Jean-François Alcover, Nov 22 2017 *)
    CoefficientList[Series[1/((x-1)^4(x^4+x^3+x^2+x+1)^2),{x,0,100}],x] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    apply( {A144679(n)=(3*n+3-10*n\=5)*(n+1)*(n+2)\6}, [0..55]) \\ M. F. Hasler, Jun 25 2021
    
  • Sage
    def A144679_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^5))^2 ).list()
    A144679_list(60) # G. C. Greubel, Oct 18 2021

Formula

From Johannes W. Meijer, May 20 2011: (Start)
a(n-4) + a(n-3) + a(n-2) + a(n-1) + a(n) = A122047(n+2).
G.f.: 1/((1-x)^4*(1 + x + x^2 + x^3 + x^4)^2). (End)
a(n) = r*A000292(q+1) + (5-r)*A000292(q) = (n + 2r + 1)*(q + 2)*(q + 1)/6, where A000292(q) = binomial(q+2,3), r = (n+1) mod 5, q = (n+1-r)/5. - M. F. Hasler, Jun 25 2021

A349841 Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A118923, A349839, A349841 which have all ones on the left side, ones separated by m-1 zeros on the other side, and whose interiors obey Pascal's recurrence.
T(n,k) is the (n,n-k)-th entry of the (1/(1-x^5),x/(1-x)) Riordan array.
For n>0, T(n,n-1) = A002266(n+4).
For n>1, T(n,n-2) = A008732(n-2).
For n>2, T(n,n-3) = A122047(n-1).
Sums of rows give A349842.
Sums of antidiagonals give A349843.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   1,   0;
  1,   2,   1,   0;
  1,   3,   3,   1,   0;
  1,   4,   6,   4,   1,   1;
  1,   5,  10,  10,   5,   2,   0;
  1,   6,  15,  20,  15,   7,   2,   0;
  1,   7,  21,  35,  35,  22,   9,   2,   0;
  1,   8,  28,  56,  70,  57,  31,  11,   2,   0;
  1,   9,  36,  84, 126, 127,  88,  42,  13,   2,   1;
		

Crossrefs

Other members of sequence of triangles: A007318, A059259, A118923, A349839.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]

Formula

G.f.: (1-x*y)/((1-(x*y)^5)(1-x-x*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the series expansion of the g.f.
T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-1 for n>0.
T(n,2) = (n-1)*(n-2)/2 for n>1.
T(n,3) = (n-1)*(n-2)*(n-3)/6 for n>2.
T(n,4) = (n-1)*(n-2)*(n-3)*(n-4)/24 for n>3.
T(n,5) = C(n-1,5) + 1 for n>4.
T(n,6) = C(n-1,6) + n - 6 for n>5.
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/5)} binomial(n-5*j,n-k)/(n-5*j).
The g.f. of the n-th subdiagonal is 1/((1-x^5)(1-x)^n).

A384328 Expansion of 1 / ((1-x)^3 * (1-x^7)).

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 37, 48, 61, 76, 93, 112, 133, 157, 184, 214, 247, 283, 322, 364, 410, 460, 514, 572, 634, 700, 770, 845, 925, 1010, 1100, 1195, 1295, 1400, 1511, 1628, 1751, 1880, 2015, 2156, 2303, 2457, 2618, 2786, 2961
Offset: 0

Views

Author

Hoang Xuan Thanh, May 26 2025

Keywords

Comments

Number of nonnegative integer solutions of equation x + y + z + 7*w=n.
a(n) is the number of partitions of n into parts 1 of three kinds and 7 (of one kind). - Joerg Arndt, May 28 2025

Crossrefs

Programs

  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x)^3*(1-x^7))) \\ Michel Marcus, May 27 2025

Formula

a(n) = ((n+2) * (n+9) * (n+4) - (r+2) * (r-5) * (r-3)) / 42 where r = n mod 7.
a(n) = floor((n+3) * (n^2+12*n+26) / 42).
Showing 1-8 of 8 results.