cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144677 Related to enumeration of quantum states (see reference for precise definition).

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 18, 24, 30, 40, 50, 60, 75, 90, 105, 126, 147, 168, 196, 224, 252, 288, 324, 360, 405, 450, 495, 550, 605, 660, 726, 792, 858, 936, 1014, 1092, 1183, 1274, 1365, 1470, 1575, 1680, 1800, 1920, 2040, 2176, 2312, 2448, 2601, 2754, 2907, 3078, 3249, 3420
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2009

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 0, 0, 2, 0, 0, 3, ...) = (1 + 2*x + 3*x^2 + ...) * (1 + 2*x^3 + 3*x^6 + ...). - Gary W. Adamson, Feb 23 2010
The Ca2 and Ze4 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the sequence given above, e.g., Ca2(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + a(n-4). - Johannes W. Meijer, May 20 2011

Crossrefs

Programs

  • Magma
    I:=[1,2,3,6,9,12,18,24]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3)-4*Self(n-4)+2*Self(n-5)-Self(n-6)+2*Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Mar 28 2015
    
  • Maple
    n:=80; lambda:=3; S10b:=[];
    for ii from 0 to n do
    x:=floor(ii/lambda);
    snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
    S10b:=[op(S10b),snc];
    od:
    S10b;
    A144677 := proc(n) option remember; local k1; sum(A190717(n-k1),k1=0..2) end: A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A144677(n), n=0..53); # Johannes W. Meijer, May 20 2011
  • Mathematica
    CoefficientList[Series[1/((x - 1)^4*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 28 2015 *)
    LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 2, 3, 6, 9, 12, 18, 24}, 60 ] (* Vincenzo Librandi, Mar 28 2015 *)
  • Sage
    @CachedFunction
    def a(n): return sum( ((j+3)//3)*((n-j+3)//3) for j in (0..n) )
    [a(n) for n in (0..60)] # G. C. Greubel, Oct 18 2021

Formula

From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A190717(n-2) + A190717(n-1) + A190717(n).
a(n-2) + a(n-1) + a(n) = A014125(n).
G.f.: 1/((1-x)^4*(1+x+x^2)^2). (End)
From Wesley Ivan Hurt, Mar 28 2015: (Start)
a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
a(n) = ((2 + floor(n/3))^3 - floor((n+4)/3) + floor((n+4)/3)^3 - floor((n+5)/3) + floor((n+5)/3)^3 - floor((n+6)/3))/6. (End)
a(n) = Sum_{j=0..n} floor((j+3)/3)*floor((n-j+3)/3). - G. C. Greubel, Oct 18 2021
a(n) = (132+129*n+36*n^2+3*n^3+6*(n+5)*cos(2*n*Pi/3)+2*sqrt(3)*(3*n+11)*sin(2*n*Pi/3))/162. - Wesley Ivan Hurt, Sep 01 2025

A122047 Degree of the polynomial P(n,x), defined by a Somos-6 type sequence: P(n,x)=(x^(n-1)*P(n-1,x)*P(n-5,x) + P(n-2,x)*P(n-4,x))/P(n-6,x), initialized with P(n,x)=1 at n<0.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 22, 31, 42, 55, 70, 88, 109, 133, 160, 190, 224, 262, 304, 350, 400, 455, 515, 580, 650, 725, 806, 893, 986, 1085, 1190, 1302, 1421, 1547, 1680, 1820, 1968, 2124, 2288, 2460, 2640, 2829, 3027
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Maximum Wiener index of all maximal 5-degenerate graphs with n vertices. (A maximal 5-degenerate graph can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to 5 existing vertices.) The extremal graphs are 5th powers of paths, so the bound also applies to 5-trees. - Allan Bickle, Sep 15 2022

Crossrefs

The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623, A014125, A122046, A122047 (this sequence), A175724, respectively.

Programs

  • Mathematica
    p[n_] := p[n] = Cancel[Simplify[(x^(n - 1)p[n - 1]p[n - 5] + p[n - 2]*p[n - 4])/p[n - 6]]];p[ -6] = 1; p[ -5] = 1; p[ -4] = 1; p[ -3] = 1; p[ -2] = 1; p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]

Formula

Conjectures from R. J. Mathar, Jul 15 2008: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8);
o.g.f.: x^2/((x^4+x^3+x^2+x+1)(x-1)^4). (End)
Conjecture: a(n) = (A000292(n+1) - n - 2 - (-1)^floor((n-1)/5)*A099443(n+1))/5. - R. J. Mathar, Jul 15 2008
a(n+2) = A144679(n) + A144679(n-1) + A144679(n-2) + A144679(n-3) + A144679(n-4). - Johannes W. Meijer, May 20 2011
a(n) = floor((n^3 + 6*n^2 + 5*n)/30). - Allan Bickle, Sep 15 2022

Extensions

Edited by N. J. A. Sloane, Jul 15 2008
a(22)-a(43) from R. J. Mathar, Jul 15 2008

A144678 Related to enumeration of quantum states (see reference for precise definition).

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 16, 22, 28, 34, 40, 50, 60, 70, 80, 95, 110, 125, 140, 161, 182, 203, 224, 252, 280, 308, 336, 372, 408, 444, 480, 525, 570, 615, 660, 715, 770, 825, 880, 946, 1012, 1078, 1144, 1222, 1300, 1378, 1456, 1547, 1638, 1729, 1820, 1925, 2030, 2135
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2009

Keywords

Comments

The Gi2 triangle sums of the triangle A159797 are linear sums of shifted versions of the sequence given above, i.e., Gi2(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). For the definitions of the Gi2 and other triangle sums see A180662. [Johannes W. Meijer, May 20 2011]
Partial sums of 1,1,1,1, 3,3,3,3, 6,6,6,6,..., the quadruplicated A000217. - R. J. Mathar, Aug 25 2013
Number of partitions of n into two different parts of size 4 and two different parts of size 1. a(4) = 7: 4, 4', 1111, 1111', 111'1', 11'1'1', 1'1'1'1'. - Alois P. Heinz, Dec 22 2021

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^4))^2 )); // G. C. Greubel, Oct 18 2021
    
  • Maple
    n:=80; lambda:=4; S10b:=[];
    for ii from 0 to n do
    x:=floor(ii/lambda);
    snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
    S10b:=[op(S10b),snc];
    od:
    S10b;
    A144678 := proc(n) option remember;
       local k;
       sum(A190718(n-k),k=0..3)
    end:
    A190718:= proc(n)
       binomial(floor(n/4)+3,3)
    end:
    seq(A144678(n),n=0..54); # Johannes W. Meijer, May 20 2011
  • Mathematica
    a[n_] = (r = Mod[n, 4]; (4+n-r)(8+n-r)(3+n+2r)/96); Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Sep 02 2011 *)
    LinearRecurrence[{2,-1,0,2,-4,2,0,-1,2,-1}, {1,2,3,4,7,10,13,16,22,28}, 60] (* G. C. Greubel, Oct 18 2021 *)
  • PARI
    Vec(1/(x-1)^4/(x^3+x^2+x+1)^2+O(x^99)) \\ Charles R Greathouse IV, Jun 20 2013
    
  • Sage
    def A144678_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^4))^2 ).list()
    A144678_list(60) # G. C. Greubel, Oct 18 2021

Formula

From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A190718(n-3) + A190718(n-2) + A190718(n-1) + A190718(n).
a(n-3) + a(n-2) + a(n-1) + a(n) = A122046(n+3).
G.f.: 1/((x-1)^4*(x^3+x^2+x+1)^2). (End)
a(n) = A009531(n+5)/16 + (n+5)*(2*n^2+20*n+33+3*(-1)^n)/192 . - R. J. Mathar, Jun 20 2013
a(n) = Sum_{i=1..n+8} floor(i/4) * floor((n+8-i)/4). - Wesley Ivan Hurt, Jul 21 2014
From Alois P. Heinz, Dec 22 2021: (Start)
G.f.: 1/((1-x)*(1-x^4))^2.
a(n) = Sum_{j=0..floor(n/4)} (j+1)*(n-4*j+1). (End)

A343608 a(n) = [n/5]*[n/5 - 1]*(3n - 10[n/5 + 1])/6, where [.] = floor: upper bound for minimum number of monochromatic triangles in a 3-edge-colored complete graph K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 196, 217, 238, 259, 280, 308, 336, 364, 392, 420, 456, 492, 528, 564, 600, 645, 690, 735, 780, 825, 880, 935, 990, 1045, 1100, 1166
Offset: 0

Views

Author

M. F. Hasler, Jun 25 2021

Keywords

Comments

Consider the complete graph K_n whose n(n-1)/2 edges are colored with 3 distinct colors as to minimize the number of monochromatic triangles, i.e., subgraphs isomorphic to K_3 having all edges of the same color.
Cummings et al. show that this minimum number of monochromatic triangles M_3(K_3,n) is given by a(n) for sufficiently large n.
For the actual minimum numbers, we currently only know M_3(K_3,n) = 0 for n < 17, and M_3(K_3, 17) = 5.
Known examples for n>17, where the actual minimum value is below this upper bound: M_3(K_3, 18) <= 10 < 14 = a(18), M_3(K_3, 19) <= 15 < 17 = a(19), M_3(K_3, 21) <= 25 < 26 = a(21). For n>21, the current best known minimum values match the upper bound. - Dmitry Kamenetsky, Jul 01 2021

Examples

			a(17) = [17/5]*[17/5 - 1]*(3*17 - 10[17/5 + 1])/6 = 3*2*11/6 = 11, which is the number of monochromatic triangles obtained by coloring the edges of the complete graph K_17 as follows: edges (i,j) with mod(j-i,5) in {1,4} get color 1, edges (i,j) with mod(j-i,5) in {2,3} get color 2, and edges (i,j) with mod(j-i,5) = 0 get color 3.  The minimum number of monochromatic triangles in an edge-coloring of K_17 with 3 colors turns out to be 5 <= 11.
		

Programs

  • PARI
    apply( {A343608(n)=n\5*(n\5-1)*(n-10+n%5*2)/6}, [1..55])

Formula

a(n) = A144679(n-11) = r*A000292(q-1) + (5-r)*A000292(q-2) = q(q - 1)(n + 2r - 10)/6, where A000292(q-2) = binomial(q,3), r = n mod 5 and q = (n-r)/5, for sufficiently large n, according to Cummings et al., Corollary 3.

Extensions

Definition corrected following an observation by Rob Pratt, Jun 28 2021
Showing 1-4 of 4 results.