cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122061 First pentagonal number, 2nd hexagonal number, 3rd heptagonal number, 4th octagonal number and then repeat the same pattern: 5th pentagonal, 6th hexagonal, 7th heptagonal, 8th octagonal, etc.

Original entry on oeis.org

1, 6, 18, 40, 35, 66, 112, 176, 117, 190, 286, 408, 247, 378, 540, 736, 425, 630, 874, 1160, 651, 946, 1288, 1680, 925, 1326, 1782, 2296, 1247, 1770, 2356, 3008, 1617, 2278, 3010, 3816, 2035, 2850, 3744, 4720, 2501, 3486, 4558, 5720, 3015, 4186, 5452
Offset: 1

Views

Author

Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006

Keywords

Comments

From a quiz.

References

  • A. Wareham, Test Your Brain Power, Ward Lock Ltd (1995).

Crossrefs

Cf. A060354.

Programs

  • Mathematica
    fn[n_]:=Module[{r=Mod[n,4]},Which[r==1,(n(3n-1))/2,r==2,(n(4n-2))/2,r==3,(n(5n-3))/2,r==0,(n(6n-4))/2]]; Array[fn,50] (* or *) LinearRecurrence[ {0,0,0,3,0,0,0,-3,0,0,0,1},{1,6,18,40,35,66,112,176,117,190,286,408},50] (* Harvey P. Dale, Mar 01 2015 *)
  • PARI
    for(n=1,60,m=(n+3)%4;print1(n*((m+3)*n-m-1)/2,","))

Formula

a(n) = n*(3*n-1)/2 if n=1 mod 4 or n*(4*n-2)/2 if n=2 mod 4 or n*(5*n-3)/2 if n=3 mod 4 or n*(6*n-4)/2 if n=0 mod 4
a(n)=3*a(n-4)-3*a(n-8)+a(n-12) for n>11. - Harvey P. Dale, Mar 01 2015