cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0

Views

Author

Ralf Stephan, Dec 24 2013

Keywords

Examples

			Array starts:
1,  2,   3,    5,     8,     13,    21,   34, 55, 89,...    (A000045)
2,  8,  24,   80,   256,    832,  2688, 8704,...   (A063727, A085449)
3, 18,  81,  405,  1944,   9477, 45927,...         (A122069, A099012)
4, 32, 192, 1280,  8192,  53248,...                         (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
		

Programs

  • PARI
    T(n,k)=n^k*fibonacci(k)
    
  • PARI
    T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)

Formula

G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.

A085504 Horadam sequence (0,1,9,3).

Original entry on oeis.org

0, 1, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333, 899287025215113, 4365230915850336
Offset: 0

Views

Author

Ross La Haye, Aug 18 2003

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = (3/2)*(1 + sqrt(5)), which can also be written as phi^2 + 2*phi - 1, phi^3 + phi - 1, phi + sqrt(5) + 1, 3*phi, 3*phi^2 - 3, phi^4 - 2 and lim_{n->infinity} (3/2)*(1 + Lucas(n)/Fibonacci(n)).

Examples

			a(4) = 405 because a(3) = 81, a(2) = 18, s = 3, r = 9 and (3 * 81) + (9 * 18) = 405.
		

Crossrefs

Essentially the same as A122069 and A099012.

Programs

  • Mathematica
    Join[{0,1},LinearRecurrence[{3,9},{18,81},30]] (* or *) CoefficientList[ Series[x (1+15x+18x^2)/(1-3x-9x^2),{x,0,30}],x] (* Harvey P. Dale, Nov 24 2012 *)

Formula

a(n) = s*a(n-1) + r*a(n-2); for n > 3, where a(0) = 0, a(1) = 1, a(2) = 18, a(4) = 81, s = 3, r = 9.
G.f.: x*(1+15*x+18*x^2)/(1-3*x-9*x^2). [Colin Barker, Jun 20 2012]

Extensions

First formula corrected and more terms from Harvey P. Dale, Nov 24 2012
Showing 1-2 of 2 results.