cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122071 Sum over divisors d of 2n+1 of Kronecker(-18/d).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 4
Offset: 0

Views

Author

Michael Somos, Aug 20 2006

Keywords

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.58).

Crossrefs

A035172(2n+1) = a(n).
Cf. A093825.

Programs

  • Mathematica
    a[n_] := DivisorSum[2*n+1, KroneckerSymbol[-18, #] &]; Array[a, 100, 0] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    {a(n)=if(n<0, 0, n=2*n+1; sumdiv(n, d, kronecker(-18,d)))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^3+A)*eta(x^8+A)*eta(x^12+A)^3/ eta(x+A)/eta(x^4+A)^2/eta(x^6+A)/eta(x^24+A), n))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p==3, 1, if(p%8<4, e+1, (1+(-1)^e)/2))))))}
    
  • PARI
    a(n) = sumdiv(2*n+1, d, kronecker(-18, d)); \\ Michel Marcus, Jul 28 2017

Formula

Expansion of q^(-1/2)*eta(q^2)^2*eta(q^3)*eta(q^8)*eta(q^12)^3/ (eta(q)*eta(q^4)^2*eta(q^6)*eta(q^24)) in powers of q.
Euler transform of period 24 sequence [1, -1, 0, 1, 1, -1, 1, 0, 0, -1, 1, -2, 1, -1, 0, 0, 1, -1, 1, 1, 0, -1, 1, -2, ...].
a(n) = b(2n+1) where b(n) is multiplicative and b(2^e)=0^e, b(3^e)=1, b(p^e) = e+1 if p == 1,3 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 5,7 (mod 8).
G.f.: Sum_{k>0} x^k(1-x^(4k-2))(1-x^(6k-3))/(1+x^(12k-6)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/(3*sqrt(2)) = 0.7404804... (A093825). - Amiram Eldar, Dec 16 2023