A122087 Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= floor(n/2), except k = 0 if n = 1 ) nodes of one color and n-k nodes of the other color (the colors are interchangeable).
1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 7, 1, 3, 10, 9, 1, 4, 14, 28, 1, 4, 19, 45, 37, 1, 5, 24, 73, 132, 1, 5, 30, 105, 242, 168, 1, 6, 37, 152, 412, 693, 1, 6, 44, 204, 660, 1349, 895, 1, 7, 52, 274, 1008, 2472, 3927, 1, 7, 61, 351, 1479, 4219, 8105, 5097, 1, 8
Offset: 1
Examples
K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color. 0 1 1 Total( 1) = 1 1 1 1 Total( 2) = 1 1 2 1 Total( 3) = 1 1 3 1 2 2 1 Total( 4) = 2 1 4 1 2 3 2 Total( 5) = 3 1 5 1 2 4 2 3 3 3 Total( 6) = 6 1 6 1 2 5 3 3 4 7 Total( 7) = 11 1 7 1 2 6 3 3 5 10 4 4 9 Total( 8) = 23 From _Andrew Howroyd_, Apr 05 2023: (Start) Triangle begins: n\k| 0 1 2 3 4 5 6 ----+---------------------------- 1 | 1; 2 | . 1; 3 | . 1; 4 | . 1, 1; 5 | . 1, 2; 6 | . 1, 2, 3; 7 | . 1, 3, 7; 8 | . 1, 3, 10, 9; 9 | . 1, 4, 14, 28; 10 | . 1, 4, 19, 45, 37; 11 | . 1, 5, 24, 73, 132; 12 | . 1, 5, 30, 105, 242, 168; ... (End)
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
Links
- R. W. Robinson, Rows 1 through 30, flattened