cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122100 a(n) = 3*a(n-1) - a(n-3) for n>2, with a(0)=1, a(1)=-1, a(2)=0.

Original entry on oeis.org

1, -1, 0, -1, -2, -6, -17, -49, -141, -406, -1169, -3366, -9692, -27907, -80355, -231373, -666212, -1918281, -5523470, -15904198, -45794313, -131859469, -379674209, -1093228314, -3147825473, -9063802210, -26098178316, -75146709475, -216376326215, -623030800329, -1793945691512
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2006

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,-1,0];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-3]; od; a; # G. C. Greubel, Oct 02 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-4*x+3*x^2)/(1-3*x+x^3) )); // G. C. Greubel, Oct 02 2019
    
  • Maple
    seq(coeff(series((1-4*x+3*x^2)/(1-3*x+x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 02 2019
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,-1,0},40] (* Harvey P. Dale, Nov 14 2014 *)
  • PARI
    Vec((1-4*x+3*x^2)/(1-3*x+x^3)+O(x^40)) \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    def A122100_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-4*x+3*x^2)/(1-3*x+x^3)).list()
    A122100_list(40) # G. C. Greubel, Oct 02 2019
    

Formula

G.f.: (1-4*x+3*x^2)/(1-3*x+x^3).